2 resultados para structural failure
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The goal of the research is to provide an overview of those factors that play a major role in structural failures and also to focus on the importance that bracing has in construction accidents. A temporary bracing system is important to construction safety, yet it is often neglected. Structural collapses often occur due to the insufficient support of loads that are applied at the time of failure. The structural load is usually analyzed by conceiving the whole structure as a completed entity, and there is frequently a lack of design or proper implementation of systems that can provide stability during construction. Often, the specific provisions and requirements of temporary bracing systems are left to the workers on the job site that may not have the qualifications or expertise for proper execution. To effectively see if bracing design should get more attention in codes and standards, failures which could have been avoided with the presence and/or the correct design of a bracing system were searched and selected among a variety of cases existing in the engineering literature. Eleven major cases were found, which span in a time frame of almost 70 years, clearly showing that the topic should get more attention. The case studies are presented in chronological order and in a systematic way. The failed structure is described in its design components and the sequence of failure is reconstructed. Then, the causes and failure mechanism are presented. Advice on how to avoid similar failures from happening again and hypothetic solutions which could have prevented the collapses are identified. The findings shows that insufficient or nonexistent bracing mainly results from human negligence or miscalculation of the load analysis and show that time has come to fully acknowledge that temporary structures should be more accounted for in design and not left to contractors' means and methods of construction.
Resumo:
As sustainability becomes an integral design driver for current civil structures, new materials and forms are investigated. The aim of this study is to investigate analytically and numerically the mechanical behavior of monolithic domes composed of mycological fungi. The study focuses on hemispherical and elliptical forms, as the most typical solution for domes. The influence of different types of loading, geometrical parameters, material properties and boundary conditions is investigated in this study. For the cases covered by the classical shell theory, a comparison between the analytical and the finite element solution is given. Two case studies regarding the dome of basilica of “San Luca” (Bologna, Italy) and the dome of sanctuary of “Vicoforte” (Vicoforte, Italy) are included. After the linear analysis under loading, buckling is also investigated as a critical type of failure through a parametric study using finite elements model. Since shells rely on their shape, form-found domes are also investigated and a comparison between the behavior of the form-found domes and the hemispherical domes under the linear and buckling analysis is conducted. From the analysis it emerges that form-finding can enhance the structural response of mycelium-based domes, although buckling becomes even more critical for their design. Furthermore, an optimal height to span ratio for the buckling of form-found domes is identified. This study highlights the importance of investigating appropriate forms for the design of novel biomaterial-based structures.