3 resultados para solution structure

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analysis and a subsequent solution is here presented. This document is about a groin design able to contrast the erosion actions given by waves in Lido di Dante. Advantages will be visible also for Fiumi Uniti's inlet, in the north side of the shoreline. Beach future progression and growth will be subjected to monitoring actions in the years after groin construction. The resulting effects of the design will have a positive impact not only on the local fauna and environment, but also, a naturalistic appeal will increase making new type of tourists coming not only for recreational purposes. The design phase is focused on possible design alternatives and their features. Particular interest is given to scouring phenomena all around the groin after its construction. Groin effects will impact not only on its south side, instead they will cause an intense erosion process on the downdrift front. Here, many fishing hut would be in danger, thus a beach revetment structure is needed to avoid any future criticality. In addiction, a numerical model based on a generalized shoreline change numerical model, also known as GENESIS, has been applied to the study area in order to perform a simplistic analysis of the shoreline and its future morphology. Critical zones are visible in proximity of the Fiumi Uniti's river inlet, where currents from the sea and the river itself start the erosion process that is affecting Lido di Dante since mid '80s, or even before. The model is affected by several assumptions that make results not to be interpreted as a real future trend of the shore. Instead the model allows the user to have a more clear view about critical processes induced by monochromatic inputed waves. In conclusion, the thesis introduce a wide analysis on a complex erosion process that is affecting many shoreline nowadays. A groin design is seen as a hard solution it is considered to be the only means able to decrease the rate of erosion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When it comes to designing a structure, architects and engineers want to join forces in order to create and build the most beautiful and efficient building. From finding new shapes and forms to optimizing the stability and the resistance, there is a constant link to be made between both professions. In architecture, there has always been a particular interest in creating new shapes and types of a structure inspired by many different fields, one of them being nature itself. In engineering, the selection of optimum has always dictated the way of thinking and designing structures. This mindset led through studies to the current best practices in construction. However, both disciplines were limited by the traditional manufacturing constraints at a certain point. Over the last decades, much progress was made from a technological point of view, allowing to go beyond today's manufacturing constraints. With the emergence of Wire-and-Arc Additive Manufacturing (WAAM) combined with Algorithmic-Aided Design (AAD), architects and engineers are offered new opportunities to merge architectural beauty and structural efficiency. Both technologies allow for exploring and building unusual and complex structural shapes in addition to a reduction of costs and environmental impacts. Through this study, the author wants to make use of previously mentioned technologies and assess their potential, first to design an aesthetically appreciated tree-like column with the idea of secondly proposing a new type of standardized and optimized sandwich cross-section to the construction industry. Parametric algorithms to model the dendriform column and the new sandwich cross-section are developed and presented in detail. A catalog draft of the latter and methods to establish it are then proposed and discussed. Finally, the buckling behavior of this latter is assessed considering standard steel and WAAM material properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Negative Stiffness Structures are mechanical systems that require a decrease in the applied force to generate an increase in displacement. They are structures that possess special characteristics such as snap-through and bi-stability. All of these features make them particularly suitable for different applications, such as shock-absorption, vibration isolation and damping. From this point of view, they have risen awareness of their characteristics and, in order to match them to the application needed, a numerical simulation is of great interest. In this regard, this thesis is a continuation of previous studies in a circular negative stiffness structure and aims at refine the numerical model by presenting a new solution. To that end, an investigation procedure is needed. Amongst all of the methods available, root cause analysis was the chosen one to perform the investigation since it provides a clear view of the problem under analysis and a categorization of all the causes behind it. As a result of the cause-effect analysis, the main causes that have influence on the numerical results were obtained. Once all of the causes were listed, solutions to them were proposed and it led to a new numerical model. The numerical model proposed was of nonlinear type of analysis with hexagonal elements and a hyperelastic material model. The results were analyzed through force-displacement curves, allowing for the visualization of the structure’s energy recovery. When compared to the results obtained from the experimental part, it is evident that the trend is similar and the negative stiffness behaviour is present.