4 resultados para solid waste regionalization
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
This work assesses the environmental impact of a municipal solid waste incinerator with energy recovery in Forlì-Cesena province (Emilia-Romagna region, Italy). The methodology used is Life Cycle Assessment (LCA). As the plant already applies the best technologies available in waste treatment, this study focuses on the fate of the residues (bottom and fly ash) produced during combustion. Nine scenarios are made, based on different ash treatment disposing/recycling techniques. The functional unit is the amount of waste incinerated in 2011. Boundaries are set from waste arrival in the plant to the disposal/recovery of the residues produced, with energy recovery. Only the operative period is considered. Software used is GaBi 4 and the LCIA method used is CML2001. The impact categories analyzed are: abiotic depletion, acidification, eutrophication, freshwater aquatic ecotoxicity, global warming, human toxicity, ozone layer depletion, photochemical oxidant formation, terrestrial ecotoxicity and primary energy demand. Most of the data are taken from Herambiente. When primary data are not available, data from Ecoinvent and GaBi databases or literature data are used. The whole incineration process is sustainable, due to the relevant avoided impact given by co-generator. As far as regards bottom ash treatment, the most influential process is the impact savings from iron recovery. Bottom ash recycling in road construction or as building material are both valid alternatives, even if the first option faces legislative limits in Italy. Regarding fly ash inertization, the adding of cement and Ferrox treatment results the most feasible alternatives. However, this inertized fly ash can maintain its hazardous nature. The only method to ensure the stability of an inertized fly ash is to couple two different stabilization treatments. Ash stabilization technologies shall improve with the same rate of the flexibility of the national legislation about incineration residues recycling.
Resumo:
Il presente elaborato è stato finalizzato allo sviluppo di un processo di digestione anaerobica della frazione organica dei rifiuti solidi urbani (FORSU oppure, in lingua inglese OFMSW, Organic Fraction of Municipal Solid Waste) provenienti da raccolta indifferenziata e conseguente produzione di biogas da impiegarsi per il recupero energetico. Questo lavoro rientra nell’ambito di un progetto, cofinanziato dalla Regione Emilia Romagna attraverso il Programma Regionale per la Ricerca Industriale, l’Innovazione e il Trasferimento Tecnologico (PRRIITT), sviluppato dal Dipartimento di Chimica Applicata e Scienza dei Materiali (DICASM) dell’Università di Bologna in collaborazione con la Facoltà di Ingegneria dell’Università di Ferrara e con la società Recupera s.r.l. che applicherà il processo nell’impianto pilota realizzato presso il proprio sito di biostabilizzazione e compostaggio ad Ostellato (FE). L’obiettivo è stato la verifica della possibilità di impiegare la frazione organica dei rifiuti indifferenziati per la produzione di biogas, e in particolare di metano, attraverso un processo di digestione anaerobica previo trattamento chimico oppure in codigestione con altri substrati organici facilmente fermentabili. E’ stata inoltre studiata la possibilità di impiego di reattori con biomassa adesa per migliorare la produzione specifica di metano e diminuire la lag phase. Dalla sperimentazione si può concludere che è possibile giungere allo sviluppo di metano dalla purea codigerendola assieme a refluo zootecnico. Per ottenere però produzioni significative la quantità di solidi volatili apportati dal rifiuto non deve superare il 50% dei solidi volatili complessivi. Viceversa, l’addizione di solfuri alla sola purea si è dimostrata ininfluente nel tentativo di sottrarre gli agenti inibitori della metanogenesi. Inoltre, l’impiego di supporti di riempimento lavorando attraverso processi batch sequenziali permette di eliminare, nei cicli successivi al primo, la lag phase dei batteri metanogeni ed incrementare la produzione specifica di metano.
Resumo:
Waste management is becoming, year after year, always more important both for the costs associated with it and for the ever increasing volumes of waste generated. The discussion on the fate of organic fraction of municipal solid waste (OFMSW) leads everyday to new solutions. Many alternatives are proposed, ranging from incineration to composting passing through anaerobic digestion. “For Biogas” is a collaborative effort, between C.I.R.S.A. and R.E.S. cooperative, whose main goal is to generate “green” energy from both biowaste and sludge anaerobic co-digestion. Specifically, the project include a pilot plant receiving dewatered sludge from both urban and agro-industrial sewage (DS) and the organic fraction of MSW (in 2/1 ratio) which is digested in absence of oxygen to produce biogas and digestate. Biogas is piped to a co-generation system producing power and heat reused in the digestion process itself, making it independent from the national grid. Digestate undergoes a process of mechanical separation giving a liquid fraction, introduced in the treatment plant, and a solid fraction disposed in landfill (in future it will be further processed to obtain compost). This work analyzed and estimated the impacts generated by the pilot plant in its operative phase. Once the model was been characterized, on the basis of the CML2001 methodology, a comparison is made with the present scenario assumed for OFMSW and DS. Actual scenario treats separately the two fractions: the organic one is sent to a composting plant, while sludge is sent to landfill. Results show that the most significant difference between the two scenarios is in the GWP category as the project "For Biogas" is able to generate “zero emission” power and heat. It also generates a smaller volume of waste for disposal. In conclusion, the analysis evaluated the performance of two alternative methods of management of OFMSW and DS, highlighting that "For Biogas" project is to be preferred to the actual scenario.
Resumo:
Sustainable development is one of the biggest challenges of the twenty fist-century. Various university has begun the debate about the content of this concept and the ways in which to integrate it into their policy, organization and activities. Universities have a special responsibility to take over a leading position by demonstrating best practices that sustain and educate a sustainable society. For that reason universities have the opportunity to create the culture of sustainability for today’s student, and to set their expectations for how the world should be. This thesis aim at analyzing how Delft University of Technology and University of Bologna face the challenge of becoming a sustainable campus. In this context, both universities have been studied and analyzed following the International Sustainable Campus Network (ISCN) methodology that provides a common framework to formalize commitments and goals at campus level. In particular this work has been aimed to highlight which key performance indicators are essential to reach sustainability as a consequence the following aspects has been taken into consideration: energy use, water use, solid waste and recycling, carbon emission. Subsequently, in order to provide a better understanding of the current state of sustainability on University of Bologna and Delft University of Technology, and potential strategies to achieve the stated objective, a SWOT Analysis has been undertaken. Strengths, weaknesses, opportunities and threats have been shown to understand how the two universities can implement a synergy to improve each other. In the direction of framing a “Sustainable SWOT” has been considered the model proposed by People and Planet, so it has been necessary to evaluate important matters as for instance policy, investment, management, education and engagement. Regarding this, it has been fundamental to involve the main sustainability coordinators of the two universities, this has been achieved through a brainstorming session. Partnerships are key to the achievement of sustainability. The creation of a bridge between two universities aims to join forces and to create a new generation of talent. As a result, people can become able to support universities in the exchange of information, ideas, and best practices for achieving sustainable campus operations and integrating sustainability in research and teaching. For this purpose the project "SUCCESS" has been presented, the project aims to create an interactive European campus network that can be considered a strategic key player for sustainable campus innovation in Europe. Specifically, the main key performance indicators have been analyzed and the importance they have for the two universities and their strategic impact have been highlighted. For this reason, a survey was conducted with people who play crucial roles for sustainability within the two universities and they were asked to evaluate the KPIs of the project. This assessment has been relevant because has represented the foundation to develop a strategy to create a true collaboration.