5 resultados para single phase system

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the field of Power Electronics, several types of motor control systems have been developed using STM microcontroller and power boards. In both industrial power applications and domestic appliances, power electronic inverters are widely used. Inverters are used to control the torque, speed, and position of the rotor in AC motor drives. An inverter delivers constant-voltage and constant-frequency power in uninterruptible power sources. Because inverter power supplies have a high-power consumption and low transfer efficiency rate, a three-phase sine wave AC power supply was created using the embedded system STM32, which has low power consumption and efficient speed. It has the capacity of output frequency of 50 Hz and the RMS of line voltage. STM32 embedded based Inverter is a power supply that integrates, reduced, and optimized the power electronics application that require hardware system, software, and application solution, including power architecture, techniques, and tools, approaches capable of performance on devices and equipment. Power inverters are currently used and implemented in green energy power system with low energy system such as sensors or microcontroller to perform the operating function of motors and pumps. STM based power inverter is efficient, less cost and reliable. My thesis work was based on STM motor drives and control system which can be implemented in a gas analyser for operating the pumps and motors. It has been widely applied in various engineering sectors due to its ability to respond to adverse structural changes and improved structural reliability. The present research was designed to use STM Inverter board on low power MCU such as NUCLEO with some practical examples such as Blinking LED, and PWM. Then we have implemented a three phase Inverter model with Steval-IPM08B board, which converter single phase 230V AC input to three phase 380 V AC output, the output will be useful for operating the induction motor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isolated DC-DC converters play a significant role in fast charging and maintaining the variable output voltage for EV applications. This study aims to investigate the different Isolated DC-DC converters for onboard and offboard chargers, then, once the topology is selected, study the control techniques and, finally, achieve a real-time converter model to accomplish Hardware-In-The-Loop (HIL) results. Among the different isolated DC-DC topologies, the Dual Active Bridge (DAB) converter has the advantage of allowing bidirectional power flow, which enables operating in both Grid to Vehicle (G2V) and Vehicle to Grid (V2G) modalities. Recently, DAB has been used in the offboard chargers for high voltage applications due to SiC and GaN MOSFETs; this new technology also allows the utilization of higher switching frequencies. By empowering soft switching techniques to reduce switching losses, higher switching frequency operation is possible in DAB. There are four phase shift control techniques for the DAB converter. They are Single Phase shift, Extended Phase shift, Dual Phase shift, Triple Phase shift controls. This thesis considers two control strategies; Single-Phase, and Dual-Phase shifts, to understand the circulating currents, power losses, and output capacitor size reduction in the DAB. Hardware-In-The-Loop (HIL) experiments are carried out on both controls with high switching frequencies using the PLECS software tool and the RT box supporting the PLECS. Root Mean Square Error is also calculated for steady-state values of output voltage with different sampling frequencies in both the controls to identify the achievable sampling frequency in real-time. DSP implementation is also executed to emulate the optimized DAB converter design, and final real-time simulation results are discussed for both the Single-Phase and Dual-Phase shift controls.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This master's thesis investigates different aspects of Dual-Active-Bridge (DAB) Converter and extends aspects further to Multi-Active-Bridges (MAB). The thesis starts with an overview of the applications of the DAB and MAB and their importance. The analytical part of the thesis includes the derivation of the peak and RMS currents, which is required for finding the losses present in the system. The power converters, considered in this thesis are DAB, Triple-Active Bridge (TAB) and Quad-Active Bridge (QAB). All the theoretical calculations are compared with the simulation results from PLECS software for identifying the correctness of the reviewed and developed theory. The Hardware-in-the-Loop (HIL) simulation is conducted for checking the control operation in real-time with the help of the RT box from the Plexim. Additionally, as in real systems digital signal processor (DSP), system-on-chip or field programmable gate array is employed for the control of the power electronic systems, and the execution of the control in the real-time simulation (RTS) conducted is performed by DSP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Crescent Shaped Brace (CSB) is a new simple steel hysteretic device proposed to be used as an enhanced diagonal brace in framed structures. The CSB allows the practical designer to choose the lateral stiffness independently from the yield strength of the device, due to its peculiar ad-hoc shape. In the present thesis, a complete study referring to different CSB configurations has been presented. After the validation of the hysteretic capacities of the Crescent Shaped Braces, the seismic concept of the "enhanced first story isolation" system has been proposed within the PBSD. It relies on the total separation between the Vertical Resisting System (VRS) and the Horizontal Resisting System (HRS) in order to attain a certain objective curve of the structure. An applicative example has been studied following this concept and exploiting the advantages of the CSBs as seismic dissipative devices used for the HRS. Then several geometrical configurations called Single CSB system, Single 2 CSB system, Double CSB system, Coupled CSB system, Coupled with high length CSB system, and the final one was Cross bracing system have been introduced and modelled with SAP2000 and the results have been compared.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this thesis is to clarify the role of non-equilibrium stationary currents of Markov processes in the context of the predictability of future states of the system. Once the connection between the predictability and the conditional entropy is established, we provide a comprehensive approach to the definition of a multi-particle Markov system. In particular, starting from the well-known theory of random walk on network, we derive the non-linear master equation for an interacting multi-particle system under the one-step process hypothesis, highlighting the limits of its tractability and the prop- erties of its stationary solution. Lastly, in order to study the impact of the NESS on the predictability at short times, we analyze the conditional entropy by modulating the intensity of the stationary currents, both for a single-particle and a multi-particle Markov system. The results obtained analytically are numerically tested on a 5-node cycle network and put in correspondence with the stationary entropy production. Furthermore, because of the low dimensionality of the single-particle system, an analysis of its spectral properties as a function of the modulated stationary currents is performed.