2 resultados para shallow acceptor
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Hydrothermal vents are often compared to desert oases, because of the presence of highly diverse and abundant biotic communities inhabiting these extreme environments. Nevertheless, the microbial communities associated with shallow-hydrothermal systems have been poorly studied. Hydrothermal activity at Dominica Island is quite well known under the geological and geochemical aspects, but no previous information existed about the microbial communities associated to this area. This thesis is therefore targeting the microbiology of hydrothermal sediments combining geochemical and molecular biological investigations, focusing on differences between hydrothermal vents and background (i.e. control) areas, and between hydrothermal sites. It was also intended to assess relationship between geochemical parameters and microbial diversity at the two hydrothermally impacted sites. Two shallow-sea hydrothermal vents located south-west off Dominica Island (Lesser Antilles) have been investigated in this study: Champagne Hot Springs and Soufriere Bay offshore vent. During this study, sediments for geochemical and molecular analyses were collected every 2 cm from the two impacted areas and from two control sites not associated with hydrothermal activity; in situ temperatures measurements were also taken every 5 cm deep in the sediment for all the sites. A geochemical characterization of the sediment porewater was performed through the analysis of several elements’ concentrations (i.e. H2S, Cl-, Br-, SO42-, Fe2+, Na+, K+, B+, Si+). Microbial communities at the different sites were studied by Automated Intergenic Spacer Analysis (ARISA). Inspection of the operational taxonomic units (OTUs) distribution was performed, as well as statistical analyses for communities’ structure and composition differences, and for changes of β-diversity along with sediment geochemistry. Data suggested that mixing between hydrothermal fluids and seawater results in distinct different environmental gradients and potential ecological niches between the two investigated hydrothermal vents, reflecting a difference in microbial community structures between them.
Resumo:
Tolerance to low temperature and high pressure may allow shallow-water species to extend bathymetric range in response to changing climate, but adaptation to contrasting shallow-water environments may affect tolerance to these factors. The brackish shallow-water shrimp Palaemon varians demonstrates remarkable tolerance to elevated hydrostatic pressure and low temperature, but inhabits a highly variable environment: environmental adaptation may therefore make P. varians tolerances unrepresentative of other shallow-water species. Critical thermal maximum (CTmax), critical hydrostatic pressure maximum (CPmax), and acute respiratory response to hydrostatic pressure were assessed in the shallow-water shrimp Palaemon serratus, which inhabits a more stable intertidal habitat. P. serratus’ CTmax was 22.3°C when acclimated at 10°C, and CPmax was 5.9, 10.1, and 14.1 MPa when acclimated at 5, 10, and 15°C respectively: these critical tolerances were consistently lower than P. varians. Respiratory responses to acute hyperbaric exposures similarly indicated lower tolerance to hydrostatic pressure in P. serratus than in P. varians. Contrasting tolerances likely reflect physiological adaptation to differing environments and reveal that the capacity for depth-range extension may vary among species from different habitats.