6 resultados para service level agreement
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Nel corso di questa tesi analizzeremo che cos'è il cloud computing, illustrando i contratti di service level agreement e le soluzioni presenti nel mercato.
Resumo:
Viene analizzato il Cloud Computing, il suo utilizzo, i vari tipi di modelli di servizio. L'attenzione poi vira sul SLA (Service Level Agreement), contratti stipulati tra il provider e l'utente affinchè il servizio venga utilizzato al meglio e in modo sicuro rispettando le norme.Infine vengono analizzati la sicurezza, la privacy e l'accountability nel Cloud.
Resumo:
In questo lavoro si vuole studiare il problema del monitoring di quei parametri del SLA che riguardano aspetti definiti a livello applicativo, nei contesti dell’erogazione di servizi business-to-business.
Resumo:
Resource management is of paramount importance in network scenarios and it is a long-standing and still open issue. Unfortunately, while technology and innovation continue to evolve, our network infrastructure system has been maintained almost in the same shape for decades and this phenomenon is known as “Internet ossification”. Software-Defined Networking (SDN) is an emerging paradigm in computer networking that allows a logically centralized software program to control the behavior of an entire network. This is done by decoupling the network control logic from the underlying physical routers and switches that forward traffic to the selected destination. One mechanism that allows the control plane to communicate with the data plane is OpenFlow. The network operators could write high-level control programs that specify the behavior of an entire network. Moreover, the centralized control makes it possible to define more specific and complex tasks that could involve many network functionalities, e.g., security, resource management and control, into a single framework. Nowadays, the explosive growth of real time applications that require stringent Quality of Service (QoS) guarantees, brings the network programmers to design network protocols that deliver certain performance guarantees. This thesis exploits the use of SDN in conjunction with OpenFlow to manage differentiating network services with an high QoS. Initially, we define a QoS Management and Orchestration architecture that allows us to manage the network in a modular way. Then, we provide a seamless integration between the architecture and the standard SDN paradigm following the separation between the control and data planes. This work is a first step towards the deployment of our proposal in the University of California, Los Angeles (UCLA) campus network with differentiating services and stringent QoS requirements. We also plan to exploit our solution to manage the handoff between different network technologies, e.g., Wi-Fi and WiMAX. Indeed, the model can be run with different parameters, depending on the communication protocol and can provide optimal results to be implemented on the campus network.
Resumo:
Sea level variation is one of the parameters directly related to climate change. Monitoring sea level rise is an important scientific issue since many populated areas of the world and megacities are located in low-lying regions. At present, sea level is measured by means of two techniques: the tide gauges and the satellite radar altimetry. Tide gauges measure sea-level relatively to a ground benchmark, hence, their measurements are directly affected by vertical ground motions. Satellite radar altimetry measures sea-level relative to a geocentric reference and are not affected by vertical land motions. In this study, the linear relative sea level trends of 35 tide gauge stations distributed across the Mediterranean Sea have been computed over the period 1993-2014. In order to extract the real sea-level variation, the vertical land motion has been estimated using the observations of available GPS stations and removed from the tide gauges records. These GPS-corrected trends have then been compared with satellite altimetry measurements over the same time interval (AVISO data set). A further comparison has been performed, over the period 1993-2013, using the CCI satellite altimetry data set which has been generated using an updated modeling. The absolute sea level trends obtained from satellite altimetry and GPS-corrected tide gauge data are mostly consistent, meaning that GPS data have provided reliable corrections for most of the sites. The trend values range between +2.5 and +4 mm/yr almost everywhere in the Mediterranean area, the largest trends were found in the Northern Adriatic Sea and in the Aegean. These results are in agreement with estimates of the global mean sea level rise over the last two decades. Where GPS data were not available, information on the vertical land motion deduced from the differences between absolute and relative trends are in agreement with the results of other studies.
Resumo:
The Internet of Things (IoT) is a critical pillar in the digital transformation because it enables interaction with the physical world through remote sensing and actuation. Owing to the advancements in wireless technology, we now have the opportunity of using their features to the best of our abilities and improve over the current situation. Indeed, the Internet of Things market is expanding at an exponential rate, with devices such as alarms and detectors, smart metres, trackers, and wearables being used on a global scale for automotive and agriculture, environment monitoring, infrastructure surveillance and management, healthcare, energy and utilities, logistics, good tracking, and so on. The Third Generation Partnership Project (3GPP) acknowledged the importance of IoT by introducing new features to support it. In particular, in Rel.13, the 3GPP introduced the so-called IoT to support Low Power Wide Area Networks (LPWAN).As these devices will be distributed in areas where terrestrial networks are not feasible or commercially viable, satellite networks will play a complementary role due to their ability to provide global connectivity via their large footprint size and short service deployment time. In this context, the goal of this thesis is to investigate the viability of integrating IoT technology with satellite communication (SatCom) systems, with a focus on the Random Access(RA) Procedure. Indeed, the RA is the most critical procedure because it allows the UE to achieve uplink synchronisation, obtain the permanent ID, and obtain uplink transmission resources. The goal of this thesis is to evaluate preamble detection in the SatCom environment.