28 resultados para semantic web
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Semantic Web technologies are strategic in order to fulfill the openness requirement of Self-Aware Pervasive Service Ecosystems. In fact they provide agents with the ability to cope with distributed data, using RDF to represent information, ontologies to describe relations between concepts from any domain (e.g. equivalence, specialization/extension, and so on) and reasoners to extract implicit knowledge. The aim of this thesis is to study these technologies and design an extension of a pervasive service ecosystems middleware capable of exploiting semantic power, and deepening performance implications.
Resumo:
Il progetto QRPlaces - Semantic Events, oggetto di questo lavoro, focalizza l’attenzione sull’analisi, la progettazione e l’implementazione di un sistema che sia in grado di modellare i dati, relativi a diversi eventi facenti parte del patrimonio turistico - culturale della Regione Emilia Romagna 1, rendendo evidenti i vantaggi associati ad una rappresentazione formale incentrata sulla Semantica. I dati turistico - culturali sono intesi in questo ambito sia come una rappresentazione di “qualcosa che accade in un certo punto ad un certo momento” (come ad esempio un concerto, una sagra, una raccolta fondi, una rappresentazione teatrale e quant’altro) sia come tradizioni e costumi che costituiscono il patrimonio turistico-culturale e a cui si fa spesso riferimento con il nome di “Cultural Heritage”. Essi hanno la caratteristica intrinseca di richiedere una conoscenza completa di diverse informa- zioni correlata, come informazioni di geo localizzazione relative al luogo fisico che ospita l’evento, dati biografici riferiti all’autore o al soggetto che è presente nell’evento piuttosto che riferirsi ad informazioni che descrivono nel dettaglio tutti gli oggetti, come teatri, cinema, compagnie teatrali che caratterizzano l’evento stesso. Una corretta rappresentazione della conoscenza ad essi legata richiede, pertanto, una modellazione in cui i dati possano essere interconnessi, rivelando un valore informativo che altrimenti resterebbe nascosto. Il lavoro svolto ha avuto lo scopo di realizzare un dataset rispondente alle caratteristiche tipiche del Semantic Web grazie al quale è stato possibile potenziare il circuito di comunicazione e informazione turistica QRPlaces 2. Nello specifico, attraverso la conversione ontologica di dati di vario genere relativi ad eventi dislocati nel territorio, e sfruttando i principi e le tecnologie del Linked Data, si è cercato di ottenere un modello informativo quanto più possibile correlato e arricchito da dati esterni. L’obiettivo finale è stato quello di ottenere una sorgente informativa di dati interconnessi non solo tra loro ma anche con quelli presenti in sorgenti esterne, dando vita ad un percorso di collegamenti in grado di evidenziare una ricchezza informativa utilizzabile per la creazione di valore aggiunto che altrimenti non sarebbe possibile ottenere. Questo aspetto è stato realizzato attraverso un’in- terfaccia di MashUp che utilizza come sorgente il dataset creato e tutti i collegamenti con la rete del Linked Data, in grado di reperire informazioni aggiuntive multi dominio.
Resumo:
L’Exploratory Search, paradigma di ricerca basato sulle attività di scoperta e d’apprendimento, è stato per diverso tempo ignorato dai motori di ricerca tradizionali. Invece, è spesso dalle ricerche esplorative che nascono le idee più innovative. Le recenti tecnologie del Semantic Web forniscono le soluzioni che permettono d’implementare dei motori di ricerca capaci di accompagnare gli utenti impegnati in tale tipo di ricerca. Aemoo, motore di ricerca sul quale s’appoggia questa tesi ne è un esempio efficace. A partire da quest’ultimo e sempre con l’aiuto delle tecnologie del Web of Data, questo lavoro si propone di fornire una metodologia che permette di prendere in considerazione la singolarità del profilo di ciascun utente al fine di guidarlo nella sua ricerca esplorativa in modo personalizzato. Il criterio di personalizzazione che abbiamo scelto è comportamentale, ovvero basato sulle decisioni che l’utente prende ad ogni tappa che ritma il processo di ricerca. Implementando un prototipo, abbiamo potuto testare la validità di quest’approccio permettendo quindi all’utente di non essere più solo nel lungo e tortuoso cammino che porta alla conoscenza.
Resumo:
La ricerca nel campo del cultural heritage management ha adottato negli ultimi decenni le tecnologie web quali strumenti privilegiati per stabilire i nuovi approcci e indirizzi nella valorizzazione della conoscenza. Questa tesi si colloca nell'ambito interdisciplinare tra le scienze umanistiche e informatiche e si fonda sulla consapevolezza del reciproco arricchimento che può derivare dal continuo confronto, le une disponendo di mezzi più espressivi e popolari per divulgare il proprio patrimonio e le altre usufruendo di “materia prima” autorevole (ossia dati strutturati di qualità e alto livello di fiducia) in fase di sperimentazione. Lo studio dei punti di tangenza tra le discipline muove da due ambiti precisi, ovvero le applicazioni informatiche nel campo dell'archivistica e gli sviluppi del semantic web nel settore delle digital humanities.
Resumo:
La presente ricerca tratta lo studio delle basi di conoscenza, volto a facilitare la raccolta, l'organizzazione e la distribuzione della conoscenza. La scelta dell’oggetto è dovuta all'importanza sempre maggiore acquisita da questo ambito di ricerca e all'innovazione che esso è in grado di apportare nel campo del Web semantico. Viene analizzata la base di conoscenza YAGO: se ne descrivono lo stato dell’arte, le applicazioni e i progetti per sviluppi futuri. Il lavoro è stato condotto esaminando le pubblicazioni relative al tema e rappresenta una risorsa in lingua italiana sull'argomento.
Interfaccia web per un sistema di condivisione semantica dell'informazione: studio e implementazione
Resumo:
Questa tesi progettuale nasce per integrare gli sforzi attuali sullo sviluppo del web semantico. La piattaforma di riferimento sulla quale è stato svolto il presente lavoro è SMART-M3. Questa piattaforma mette a disposizione uno spazio condiviso di informazioni, rappresentate e accessibili secondo le tecnologie del web semantico. In questo scenario, nasce la necessità di disporre di un'interfaccia web capace di interagire con la piattaforma - in grado di risolvere la complessità intrinseca dei dati semantici - allo scopo di averne un completo controllo; ricerche precedenti a questo proposito hanno dato come frutto una libreria PHP che mi è stata consegnata come strumento per lo sviluppo dell'interfaccia. La tesi si è articolata in 3 fasi principali: una fase iniziale di documentazione sull'argomento, eseguita principalmente sul libro “A developer's guide to the semantic web” di Liyang Yu e sulla tesi “Ontologie per il web semantico: un'analisi comparativa.” di Indrit Beqiri; una seconda fase, quella principale, di sviluppo del progetto informatico; una terza fase, infine, di sviluppo di questo elaborato di tesi, da considerarsi come la trattazione di tutto il percorso soprascritto, dall'inizio alla fine, secondo l'ordine cronologico in cui si svolto l'intero processo della tesi.
Resumo:
Con questa dissertazione di tesi miro ad illustrare i risultati della mia ricerca nel campo del Semantic Publishing, consistenti nello sviluppo di un insieme di metodologie, strumenti e prototipi, uniti allo studio di un caso d‟uso concreto, finalizzati all‟applicazione ed alla focalizzazione di Lenti Semantiche (Semantic Lenses).
Machine Learning applicato al Web Semantico: Statistical Relational Learning vs Tensor Factorization
Resumo:
Obiettivo della tesi è analizzare e testare i principali approcci di Machine Learning applicabili in contesti semantici, partendo da algoritmi di Statistical Relational Learning, quali Relational Probability Trees, Relational Bayesian Classifiers e Relational Dependency Networks, per poi passare ad approcci basati su fattorizzazione tensori, in particolare CANDECOMP/PARAFAC, Tucker e RESCAL.
Resumo:
Lo scopo del progetto Bird-A è di mettere a disposizione uno strumento basato su ontologie per progettare un'interfaccia web collaborativa di creazione, visualizzazione, modifica e cancellazione di dati RDF e di fornirne una prima implementazione funzionante. La visione che sta muovendo la comunità del web semantico negli ultimi anni è quella di creare un Web basato su dati strutturati tra loro collegati, più che su documenti. Questo modello di architettura prende il nome di Linked Data ed è basata sulla possibilità di considerare cose, concetti, persone come risorse identificabili tramite URI e di poter fornire informazioni e descrivere collegamenti tra queste risorse attraverso l'uso di formati standard come RDF. Ciò che ha però frenato la diffusione di questi dati strutturati ed interconnessi sono stati gli alti requisiti di competenze tecniche necessarie sia alla loro creazione che alla loro fruizione. Il progetto Bird-A si prefigge di semplificare la creazione e la fruizione di dati RDF, favorendone la condivisione e la diffusione anche fra persone non dotate di conoscenze tecniche specifiche.
Resumo:
Ontology design and population -core aspects of semantic technologies- re- cently have become fields of great interest due to the increasing need of domain-specific knowledge bases that can boost the use of Semantic Web. For building such knowledge resources, the state of the art tools for ontology design require a lot of human work. Producing meaningful schemas and populating them with domain-specific data is in fact a very difficult and time-consuming task. Even more if the task consists in modelling knowledge at a web scale. The primary aim of this work is to investigate a novel and flexible method- ology for automatically learning ontology from textual data, lightening the human workload required for conceptualizing domain-specific knowledge and populating an extracted schema with real data, speeding up the whole ontology production process. Here computational linguistics plays a fundamental role, from automati- cally identifying facts from natural language and extracting frame of relations among recognized entities, to producing linked data with which extending existing knowledge bases or creating new ones. In the state of the art, automatic ontology learning systems are mainly based on plain-pipelined linguistics classifiers performing tasks such as Named Entity recognition, Entity resolution, Taxonomy and Relation extraction [11]. These approaches present some weaknesses, specially in capturing struc- tures through which the meaning of complex concepts is expressed [24]. Humans, in fact, tend to organize knowledge in well-defined patterns, which include participant entities and meaningful relations linking entities with each other. In literature, these structures have been called Semantic Frames by Fill- 6 Introduction more [20], or more recently as Knowledge Patterns [23]. Some NLP studies has recently shown the possibility of performing more accurate deep parsing with the ability of logically understanding the structure of discourse [7]. In this work, some of these technologies have been investigated and em- ployed to produce accurate ontology schemas. The long-term goal is to collect large amounts of semantically structured information from the web of crowds, through an automated process, in order to identify and investigate the cognitive patterns used by human to organize their knowledge.
Resumo:
Obiettivo di questo lavoro di tesi è il perfezionamento di un sistema di Health Smart Home, ovvero un ambiente fisico (ad esempio un'abitazione) che incorpora una rete di comunicazione in grado di connettere apparecchi elettronici e servizi controllabili da remoto, con l'obiettivo di facilitare la vita ad anziani, malati o disabili nelle loro case. Questo lavoro di tesi mostrerà come è stato possibile realizzare tale sistema partendo dalle teorie e dalle tecnologie sviluppate per il Web Semantico, al fine di trasformare l'ambiente fisico in un Cyber Physical (Eco)System perfettamente funzionante.
Resumo:
Introduzione a tecniche di web semantico e realizzazione di un approccio in grado di ricreare un ambiente familiare di un qualsiasi motore di ricerca con funzionalità semantico-lessicali e possibilità di estrazione, in base ai risultati di ricerca, dei concetti e termini chiave che costituiranno i relativi gruppi di raccolta per i vari documenti con argomenti in comune.
Resumo:
La produzione ontologica è un processo fondamentale per la crescita del Web Semantico in quanto le ontologie rappresentano i vocabolari formali con cui strutturare il Web of Data. Le notazioni grafiche ontologiche costituiscono il mezzo ideale per progettare ontologie OWL sensate e ben strutturate. Tuttavia la successiva fase di generazione ontologica richiede all'utente un fastidioso cambio sia di prospettiva sia di strumentazione. Questa tesi propone dunque GraMOS, Graffoo to Manchester OWL Syntax, un motore di trasformazione da modelli Graffoo a ontologie formali in grado di fondere le due fasi di progettazione e generazione ontologica.