2 resultados para sediment particle size

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particle concentration is a principal factor that affects erosion rate of solid surfaces under particle impact, such as pipe bends in pneumatic conveyors; it is well known that a reduction in the specific erosion rate occurs under high particle concentrations, a phenomenon referred to as the “shielding effect”. The cause of shielding is believed to be increased likelihood of inter-particulate collisions, the high collision probability between incoming and rebounding particles reducing the frequency and the severity of particle impacts on the target surface. In this study, the effects of particle concentration on erosion of a mild steel bend surface have been investigated in detail using three different particulate materials on an industrial scale pneumatic conveying test rig. The materials were studied so that two had the same particle density but very different particle size, whereas two had very similar particle size but very different particle density. Experimental results confirm the shielding effect due to high particle concentration and show that the particle density has a far more significant influence than the particle size, on the magnitude of the shielding effect. A new method of correcting for change in erosivity of the particles in repeated handling, to take this factor out of the data, has been established, and appears to be successful. Moreover, a novel empirical model of the shielding effects has been used, in term of erosion resistance which appears to decrease linearly when the particle concentration decreases. With the model it is possible to find the specific erosion rate when the particle concentration tends to zero, and conversely predict how the specific erosion rate changes at finite values of particle concentration; this is critical to enable component life to be predicted from erosion tester results, as the variation of the shielding effect with concentration is different in these two scenarios. In addition a previously unreported phenomenon has been recorded, of a particulate material whose erosivity has steadily increased during repeated impacts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Venice Lagoon is a complex, heterogeneous and highly dynamic system, subject to anthropogenic and natural pressures that deeply affect the functioning of this ecosystem. Thanks to the development of acoustic technologies, it is possible to obtain maps with a high resolution that describe the characteristics of the seabed. With this aim, a high resolution Multibeam Echosounder (MBES) bathymetry and backscatter survey was carried out in 2021 within the project Research Programme Venezia 2021. Ground-truthing samples were collected in 24 sampling sites to characterize the seafloor and validate the maps produced with the MBES acoustic data. Ground-truthing included the collection of sediment samples for particle size analysis and video footage of the seabed to describe the biological component. The backscatter data was analysed using the unsupervised Jenks classification. We created a map of the habitats integrating morphological, granulometric and biological data in a GIS environment. The results obtained in this study were compared to those collected in 2015 as part of the National Flagship Project RITMARE. Through the comparison of the repeated morpho-bathymetric surveys over time we highlighted the changes of the seafloor geomorphology, sediment, and habitat distribution. We observed different type of habitats and the presence of areas characterized by erosive processes and others in which deposition occurred. These effects led to changes in the benthic communities and in the type of sediment. The combination of the MBES surveys, the ground truth data and the GIS methodology, permitted to construct high-resolution maps of the seafloor and proved to be effective implement for monitoring an extremely dynamic area. This work can contribute not only to broaden the knowledge of transitional environments, but also to their monitor and protection.