2 resultados para return to work
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Background: Gli infortuni muscolari generano grande preoccupazione nella medicina sportiva e costituiscono la più frequente causa di assenza dal campo nel calcio. Nello specifico , a causa dei gesti tecnici caratteristici di questo sport, le HSI (lesioni muscolari agli Hamstring) sono le più frequenti nei calciatori, costringendoli all’assenza dal campo più di qualsiasi altro infortunio. Il protocollo di Askling è uno degli studi più popolari e riconosciuti nella riabilitazione delle HSI. Obiettivi: L’obiettivo della revisione sistematica è valutare l’efficacia del protocollo di Askling nel RTP del calciatore post lesione muscolare agli Hamstring. Questo contributo, quindi, discuterà gli attuali concetti clinici riguardanti la riabilitazione delle HSI, analizzando trial clinici randomizzati che confrontino gli effetti del protocollo di Askling con altri protocolli. Materiali e Metodi: Nella selezione degli articoli, sono state indagate le seguenti banche dati: “PubMed”, “PEDro” e “Cochrane Library”. Una volta realizzato il PICOS, questo è stato convertito nelle parole chiave pertinenti all’argomento di interesse della revisione. Sono stati presi in esame unicamente studi RCTs, di qualsiasi anno di pubblicazione e lingua, reperibili in modalità Full Text attraverso il servizio proxy offerto dall’Università di Bologna. Gli studi per essere inclusi devono avere un punteggio PEDro score > 5. Risultati: Il tempo medio del Return To Play è stato ridotto di 23 giorni, da 51 (C-Protocol) a 28 giorni (L-Protocol). Non vi è però alcuna differenza significativa tra i gruppi per i tassi di re-injury entro 2 mesi, da 2 a 6 mesi e da 6 a 12 mesi. Conclusioni: Emerge dalla letteratura che un protocollo riabilitativo costituito principalmente da esercizi che prediligono l’allungamento muscolare risulta più efficace di un protocollo convenzionale nel ridurre il tempo trascorso dall'infortunio all'allenamento completo senza restrizioni e/o al match play.
Resumo:
The relatively young discipline of astronautics represents one of the scientifically most fascinating and technologically advanced achievements of our time. The human exploration in space does not offer only extraordinary research possibilities but also demands high requirements from man and technology. The space environment provides a lot of attractive experimental tools towards the understanding of fundamental mechanism in natural sciences. It has been shown that especially reduced gravity and elevated radiation, two distinctive factors in space, influence the behavior of biological systems significantly. For this reason one of the key objectives on board of an earth orbiting laboratory is the research in the field of life sciences, covering the broad range from botany, human physiology and crew health up to biotechnology. The Columbus Module is the only European low gravity platform that allows researchers to perform ambitious experiments in a continuous time frame up to several months. Biolab is part of the initial outfitting of the Columbus Laboratory; it is a multi-user facility supporting research in the field of biology, e.g. effect of microgravity and space radiation on cell cultures, micro-organisms, small plants and small invertebrates. The Biolab IEC are projects designed to work in the automatic part of Biolab. In this moment in the TO-53 department of Airbus Defence & Space (formerly Astrium) there are two experiments that are in phase C/D of the development and they are the subject of this thesis: CELLRAD and CYTOSKELETON. They will be launched in soft configuration, that means packed inside a block of foam that has the task to reduce the launch loads on the payload. Until 10 years ago the payloads which were launched in soft configuration were supposed to be structural safe by themselves and a specific structural analysis could be waived on them; with the opening of the launchers market to private companies (that are not under the direct control of the international space agencies), the requirements on the verifications of payloads are changed and they have become much more conservative. In 2012 a new random environment has been introduced due to the new Space-X launch specification that results to be particularly challenging for the soft launched payloads. The last ESA specification requires to perform structural analysis on the payload for combined loads (random vibration, quasi-steady acceleration and pressure). The aim of this thesis is to create FEM models able to reproduce the launch configuration and to verify that all the margins of safety are positive and to show how they change because of the new Space-X random environment. In case the results are negative, improved design solution are implemented. Based on the FEM result a study of the joins has been carried out and, when needed, a crack growth analysis has been performed.