11 resultados para resting-state networks
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Negli ultimi anni la teoria dei network è stata applicata agli ambiti più diversi, mostrando proprietà caratterizzanti tutti i network reali. In questo lavoro abbiamo applicato gli strumenti della teoria dei network a dati cerebrali ottenuti tramite MRI funzionale “resting”, provenienti da due esperimenti. I dati di fMRI sono particolarmente adatti ad essere studiati tramite reti complesse, poiché in un esperimento si ottengono tipicamente più di centomila serie temporali per ogni individuo, da più di 100 valori ciascuna. I dati cerebrali negli umani sono molto variabili e ogni operazione di acquisizione dati, così come ogni passo della costruzione del network, richiede particolare attenzione. Per ottenere un network dai dati grezzi, ogni passo nel preprocessamento è stato effettuato tramite software appositi, e anche con nuovi metodi da noi implementati. Il primo set di dati analizzati è stato usato come riferimento per la caratterizzazione delle proprietà del network, in particolare delle misure di centralità, dal momento che pochi studi a riguardo sono stati condotti finora. Alcune delle misure usate indicano valori di centralità significativi, quando confrontati con un modello nullo. Questo comportamento `e stato investigato anche a istanti di tempo diversi, usando un approccio sliding window, applicando un test statistico basato su un modello nullo pi`u complesso. Il secondo set di dati analizzato riguarda individui in quattro diversi stati di riposo, da un livello di completa coscienza a uno di profonda incoscienza. E' stato quindi investigato il potere che queste misure di centralità hanno nel discriminare tra diversi stati, risultando essere dei potenziali bio-marcatori di stati di coscienza. E’ stato riscontrato inoltre che non tutte le misure hanno lo stesso potere discriminante. Secondo i lavori a noi noti, questo `e il primo studio che caratterizza differenze tra stati di coscienza nel cervello di individui sani per mezzo della teoria dei network.
Resumo:
Capire come modellare l'attività del cervello a riposo, resting state, è il primo passo necessario per avvicinarsi a una reale comprensione della dinamica cerebrale. Sperimentalmente si osserva che, quando il cervello non è soggetto a stimoli esterni, particolari reti di regioni cerebrali presentano un'attività neuronale superiore alla media. Nonostante gli sforzi dei ricercatori, non è ancora chiara la relazione che sussiste tra le connessioni strutturali e le connessioni funzionali del sistema cerebrale a riposo, organizzate nella matrice di connettività funzionale. Recenti studi sperimentali mostrano la natura non stazionaria della connettività funzionale in disaccordo con i modelli in letteratura. Il modello implementato nella presente tesi per simulare l'evoluzione temporale del network permette di riprodurre il comportamento dinamico della connettività funzionale. Per la prima volta in questa tesi, secondo i lavori a noi noti, un modello di resting state è implementato nel cervello di un topo. Poco è noto, infatti, riguardo all'architettura funzionale su larga scala del cervello dei topi, nonostante il largo utilizzo di tale sistema nella modellizzazione dei disturbi neurologici. Le connessioni strutturali utilizzate per definire la topologia della rete neurale sono quelle ottenute dall'Allen Institute for Brain Science. Tale strumento fornisce una straordinaria opportunità per riprodurre simulazioni realistiche, poiché, come affermato nell'articolo che presenta tale lavoro, questo connettoma è il più esauriente disponibile, ad oggi, in ogni specie vertebrata. I parametri liberi del modello sono stati scelti in modo da inizializzare il sistema nel range dinamico ottimale per riprodurre il comportamento dinamico della connettività funzionale. Diverse considerazioni e misure sono state effettuate sul segnale BOLD simulato per meglio comprenderne la natura. L'accordo soddisfacente fra i centri funzionali calcolati nel network cerebrale simulato e quelli ottenuti tramite l'indagine sperimentale di Mechling et al., 2014 comprovano la bontà del modello e dei metodi utilizzati per analizzare il segnale simulato.
Resumo:
Il lavoro che ho sviluppato presso l'unità di RM funzionale del Policlinico S.Orsola-Malpighi, DIBINEM, è incentrato sull'analisi dati di resting state - functional Magnetic Resonance Imaging (rs-fMRI) mediante l'utilizzo della graph theory, con lo scopo di valutare eventuali differenze in termini di connettività cerebrale funzionale tra un campione di pazienti affetti da Nocturnal Frontal Lobe Epilepsy (NFLE) ed uno di controlli sani. L'epilessia frontale notturna è una peculiare forma di epilessia caratterizzata da crisi che si verificano quasi esclusivamente durante il sonno notturno. Queste sono contraddistinte da comportamenti motori, prevalentemente distonici, spesso complessi, e talora a semiologia bizzarra. L'fMRI è una metodica di neuroimaging avanzata che permette di misurare indirettamente l'attività neuronale. Tutti i soggetti sono stati studiati in condizioni di resting-state, ossia di veglia rilassata. In particolare mi sono occupato di analizzare i dati fMRI con un approccio innovativo in campo clinico-neurologico, rappresentato dalla graph theory. I grafi sono definiti come strutture matematiche costituite da nodi e links, che trovano applicazione in molti campi di studio per la modellizzazione di strutture di diverso tipo. La costruzione di un grafo cerebrale per ogni partecipante allo studio ha rappresentato la parte centrale di questo lavoro. L'obiettivo è stato quello di definire le connessioni funzionali tra le diverse aree del cervello mediante l'utilizzo di un network. Il processo di modellizzazione ha permesso di valutare i grafi neurali mediante il calcolo di parametri topologici che ne caratterizzano struttura ed organizzazione. Le misure calcolate in questa analisi preliminare non hanno evidenziato differenze nelle proprietà globali tra i grafi dei pazienti e quelli dei controlli. Alterazioni locali sono state invece riscontrate nei pazienti, rispetto ai controlli, in aree della sostanza grigia profonda, del sistema limbico e delle regioni frontali, le quali rientrano tra quelle ipotizzate essere coinvolte nella fisiopatologia di questa peculiare forma di epilessia.
Resumo:
In questa tesi si è studiato un corpus di importanti testi della letteratura Italiana utilizzando la teoria dei network. Le misure topologiche tipiche dei network sono state calcolate sui testi letterari, poi sono state studiate le loro distribuzioni e i loro valori medi, per capire quali di esse possono distinguere un testo reale da sue modificazioni. Inoltre si è osservato come tutti i testi presentino due importanti leggi statistiche: la legge di Zipf e quella di Heaps.
Resumo:
Questa tesi ha l’obiettivo di comprendere e valutare se l’approccio al paradigma SDN, che verrà spiegato nel capitolo 1, può essere utilizzato efficacemente per implementare dei sistemi atti alla protezione e alla sicurezza di una rete più o meno estesa. Oltre ad introdurre il paradigma SDN con i relativi componenti basilari, si introduce il protocollo fondamentale OpenFlow, per la gestione dei vari componenti. Per ottenere l’obiettivo prestabilito, si sono seguiti alcuni passaggi preliminari. Primo tra tutti si è studiato cos’è l’SDN. Esso introduce una potenziale innovazione nell’utilizzo della rete. La combinazione tra la visione globale di tutta la rete e la programmabilità di essa, rende la gestione del traffico di rete un processo abbastanza complicato in termini di livello applicativo, ma con un risultato alquanto performante in termini di flessibilità. Le alterazioni all’architettura di rete introdotte da SDN devono essere valutate per garantire che la sicurezza di rete sia mantenuta. Le Software Defined Network (come vedremo nei primi capitoli) sono in grado di interagire attraverso tutti i livelli del modello ISO/OSI e questa loro caratteristica può creare problemi. Nelle reti odierne, quando si agisce in un ambiente “confinato”, è facile sia prevedere cosa potrebbe accadere, che riuscire a tracciare gli eventi meno facilmente rilevabili. Invece, quando si gestiscono più livelli, la situazione diventa molto più complessa perché si hanno più fattori da gestire, la variabilità dei casi possibili aumenta fortemente e diventa più complicato anche distinguere i casi leciti da quelli illeciti. Sulla base di queste complicazioni, ci si è chiesto se SDN abbia delle problematiche di sicurezza e come potrebbe essere usato per la sicurezza. Per rispondere a questo interrogativo si è fatta una revisione della letteratura a riguardo, indicando, nel capitolo 3, alcune delle soluzioni che sono state studiate. Successivamente si sono chiariti gli strumenti che vengono utilizzati per la creazione e la gestione di queste reti (capitolo 4) ed infine (capitolo 5) si è provato ad implementare un caso di studio per capire quali sono i problemi da affrontare a livello pratico. Successivamente verranno descritti tutti i passaggi individuati in maniera dettagliata ed alla fine si terranno alcune conclusioni sulla base dell’esperienza svolta.
Resumo:
The rapid development in the field of lighting and illumination allows low energy consumption and a rapid growth in the use, and development of solid-state sources. As the efficiency of these devices increases and their cost decreases there are predictions that they will become the dominant source for general illumination in the short term. The objective of this thesis is to study, through extensive simulations in realistic scenarios, the feasibility and exploitation of visible light communication (VLC) for vehicular ad hoc networks (VANETs) applications. A brief introduction will introduce the new scenario of smart cities in which visible light communication will become a fundamental enabling technology for the future communication systems. Specifically, this thesis focus on the acquisition of several, frequent, and small data packets from vehicles, exploited as sensors of the environment. The use of vehicles as sensors is a new paradigm to enable an efficient environment monitoring and an improved traffic management. In most cases, the sensed information must be collected at a remote control centre and one of the most challenging aspects is the uplink acquisition of data from vehicles. My thesis discusses the opportunity to take advantage of short range vehicle-to-vehicle (V2V) and vehicle-to-roadside (V2R) communications to offload the cellular networks. More specifically, it discusses the system design and assesses the obtainable cellular resource saving, by considering the impact of the percentage of vehicles equipped with short range communication devices, of the number of deployed road side units, and of the adopted routing protocol. When short range communications are concerned, WAVE/IEEE 802.11p is considered as standard for VANETs. Its use together with VLC will be considered in urban vehicular scenarios to let vehicles communicate without involving the cellular network. The study is conducted by simulation, considering both a simulation platform (SHINE, simulation platform for heterogeneous interworking networks) developed within the Wireless communication Laboratory (Wilab) of the University of Bologna and CNR, and network simulator (NS3). trying to realistically represent all the wireless network communication aspects. Specifically, simulation of vehicular system was performed and introduced in ns-3, creating a new module for the simulator. This module will help to study VLC applications in VANETs. Final observations would enhance and encourage potential research in the area and optimize performance of VLC systems applications in the future.
Resumo:
L'obiettivo su cui è stata basata questa Tesi di Laurea è stato quello di integrare la tecnologia delle Wireless Sensor Networks (WSN) al contesto dell'Internet delle cose (IoT). Per poter raggiungere questo obiettivo, il primo passo è stato quello di approfondire il concetto dell'Internet delle cose, in modo tale da comprendere se effettivamente fosse stato possibile applicarlo anche alle WSNs. Quindi è stata analizzata l'architettura delle WSNs e successivamente è stata fatta una ricerca per capire quali fossero stati i vari tipi di sistemi operativi e protocolli di comunicazione supportati da queste reti. Infine sono state studiate alcune IoT software platforms. Il secondo passo è stato quindi di implementare uno stack software che abilitasse la comunicazione tra WSNs e una IoT platform. Come protocollo applicativo da utilizzare per la comunicazione con le WSNs è stato usato CoAP. Lo sviluppo di questo stack ha consentito di estendere la piattaforma SensibleThings e il linguaggio di programmazione utilizzato è stato Java. Come terzo passo è stata effettuata una ricerca per comprendere a quale scenario di applicazione reale, lo stack software progettato potesse essere applicato. Successivamente, al fine di testare il corretto funzionamento dello stack CoAP, è stata sviluppata una proof of concept application che simulasse un sistema per la rilevazione di incendi. Questo scenario era caratterizzato da due WSNs che inviavano la temperatura rilevata da sensori termici ad un terzo nodo che fungeva da control center, il cui compito era quello di capire se i valori ricevuti erano al di sopra di una certa soglia e quindi attivare un allarme. Infine, l'ultimo passo di questo lavoro di tesi è stato quello di valutare le performance del sistema sviluppato. I parametri usati per effettuare queste valutazioni sono stati: tempi di durata delle richieste CoAP, overhead introdotto dallo stack CoAP alla piattaforma Sensible Things e la scalabilità di un particolare componente dello stack. I risultati di questi test hanno mostrato che la soluzione sviluppata in questa tesi ha introdotto un overheadmolto limitato alla piattaforma preesistente e inoltre che non tutte le richieste hanno la stessa durata, in quanto essa dipende dal tipo della richiesta inviata verso una WSN. Tuttavia, le performance del sistema potrebbero essere ulteriormente migliorate, ad esempio sviluppando un algoritmo che consenta la gestione concorrente di richieste CoAP multiple inviate da uno stesso nodo. Inoltre, poichè in questo lavoro di tesi non è stato considerato il problema della sicurezza, una possibile estensione al lavoro svolto potrebbe essere quello di implementare delle politiche per una comunicazione sicura tra Sensible Things e le WSNs.
Resumo:
Automatic design has become a common approach to evolve complex networks, such as artificial neural networks (ANNs) and random boolean networks (RBNs), and many evolutionary setups have been discussed to increase the efficiency of this process. However networks evolved in this way have few limitations that should not be overlooked. One of these limitations is the black-box problem that refers to the impossibility to analyze internal behaviour of complex networks in an efficient and meaningful way. The aim of this study is to develop a methodology that make it possible to extract finite-state automata (FSAs) descriptions of robot behaviours from the dynamics of automatically designed complex controller networks. These FSAs unlike complex networks from which they're extracted are both readable and editable thus making the resulting designs much more valuable.
Resumo:
In recent years, Deep Learning techniques have shown to perform well on a large variety of problems both in Computer Vision and Natural Language Processing, reaching and often surpassing the state of the art on many tasks. The rise of deep learning is also revolutionizing the entire field of Machine Learning and Pattern Recognition pushing forward the concepts of automatic feature extraction and unsupervised learning in general. However, despite the strong success both in science and business, deep learning has its own limitations. It is often questioned if such techniques are only some kind of brute-force statistical approaches and if they can only work in the context of High Performance Computing with tons of data. Another important question is whether they are really biologically inspired, as claimed in certain cases, and if they can scale well in terms of "intelligence". The dissertation is focused on trying to answer these key questions in the context of Computer Vision and, in particular, Object Recognition, a task that has been heavily revolutionized by recent advances in the field. Practically speaking, these answers are based on an exhaustive comparison between two, very different, deep learning techniques on the aforementioned task: Convolutional Neural Network (CNN) and Hierarchical Temporal memory (HTM). They stand for two different approaches and points of view within the big hat of deep learning and are the best choices to understand and point out strengths and weaknesses of each of them. CNN is considered one of the most classic and powerful supervised methods used today in machine learning and pattern recognition, especially in object recognition. CNNs are well received and accepted by the scientific community and are already deployed in large corporation like Google and Facebook for solving face recognition and image auto-tagging problems. HTM, on the other hand, is known as a new emerging paradigm and a new meanly-unsupervised method, that is more biologically inspired. It tries to gain more insights from the computational neuroscience community in order to incorporate concepts like time, context and attention during the learning process which are typical of the human brain. In the end, the thesis is supposed to prove that in certain cases, with a lower quantity of data, HTM can outperform CNN.
Resumo:
In questa tesi si è studiato l’insorgere di eventi critici in un semplice modello neurale del tipo Integrate and Fire, basato su processi dinamici stocastici markoviani definiti su una rete. Il segnale neurale elettrico è stato modellato da un flusso di particelle. Si è concentrata l’attenzione sulla fase transiente del sistema, cercando di identificare fenomeni simili alla sincronizzazione neurale, la quale può essere considerata un evento critico. Sono state studiate reti particolarmente semplici, trovando che il modello proposto ha la capacità di produrre effetti "a cascata" nell’attività neurale, dovuti a Self Organized Criticality (auto organizzazione del sistema in stati instabili); questi effetti non vengono invece osservati in Random Walks sulle stesse reti. Si è visto che un piccolo stimolo random è capace di generare nell’attività della rete delle fluttuazioni notevoli, in particolar modo se il sistema si trova in una fase al limite dell’equilibrio. I picchi di attività così rilevati sono stati interpretati come valanghe di segnale neurale, fenomeno riconducibile alla sincronizzazione.
Resumo:
In this thesis we dealt with the problem of describing a transportation network in which the objects in movement were subject to both finite transportation capacity and finite accomodation capacity. The movements across such a system are realistically of a simultaneous nature which poses some challenges when formulating a mathematical description. We tried to derive such a general modellization from one posed on a simplified problem based on asyncronicity in particle transitions. We did so considering one-step processes based on the assumption that the system could be describable through discrete time Markov processes with finite state space. After describing the pre-established dynamics in terms of master equations we determined stationary states for the considered processes. Numerical simulations then led to the conclusion that a general system naturally evolves toward a congestion state when its particle transition simultaneously and we consider one single constraint in the form of network node capacity. Moreover the congested nodes of a system tend to be located in adjacent spots in the network, thus forming local clusters of congested nodes.