3 resultados para renewable building materials

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Natural stones have been widely used in the construction field since antiquity. Building materials undergo decay processes due to mechanical,chemical, physical and biological causes that can act together. Therefore an interdisciplinary approach is required in order to understand the interaction between the stone and the surrounding environment. Utilization of buildings, inadequate restoration activities and in general anthropogenic weathering factors may contribute to this degradation process. For this reasons, in the last few decades new technologies and techniques have been developed and introduced in the restoration field. Consolidants are largely used in restoration and conservation of cultural heritage in order to improve the internal cohesion and to reduce the weathering rate of building materials. It is important to define the penetration depth of a consolidant for determining its efficacy. Impregnation mainly depends on the microstructure of the stone (i.e. porosity) and on the properties of the product itself. Throughout this study, tetraethoxysilane (TEOS) applied on globigerina limestone samples has been chosen as object of investigation. After hydrolysis and condensation, TEOS deposits silica gel inside the pores, improving the cohesion of the grains. X-ray computed tomography has been used to characterize the internal structure of the limestone samples,treated and untreated with a TEOS-based consolidant. The aim of this work is to investigate the penetration depth and the distribution of the TEOS inside the porosity, using both traditional approaches and advanced X-ray tomographic techniques, the latter allowing the internal visualization in three dimensions of the materials. Fluid transport properties and porosity have been studied both at macroscopic scale, by means of capillary uptake tests and radiography, and at microscopic scale,investigated with X-ray Tomographic Microscopy (XTM). This allows identifying changes in the porosity, by comparison of the images before and after the treatment, and locating the consolidant inside the stone. Tests were initially run at University of Bologna, where characterization of the stone was carried out. Then the research continued in Switzerland: X-ray tomography and radiography were performed at Empa, Swiss Federal Laboratories for Materials Science and Technology, while XTM measurements with synchrotron radiation were run at Paul Scherrer Institute in Villigen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The demand for novel renewable energy sources, together with the new findings on bacterial electron transport mechanisms and the progress in microbial fuel cell design, have raised a noticeable interest in microbial power generation. Microbial fuel cell (MFC) is an electrochemical device that converts organic substrates into electricity via catalytic conversion by microorganism. It has represented a continuously growing research field during the past few years. The great advantage of this device is the direct conversion of the substrate into electricity and in the future, MFC may be linked to municipal waste streams or sources of agricultural and animal waste, providing a sustainable system for waste treatment and energy production. However, these novel green technologies have not yet been used for practical applications due to their low power outputs and challenges associated with scale-up, so in-depth studies are highly necessary to significantly improve and optimize the device working conditions. For the time being, the micro-scale MFCs show great potential in the rapid screening of electrochemically active microbes. This thesis presents how it will be possible to optimize the properties and design of the micro-size microbial fuel cell for maximum efficiency by understanding the MFC system. So it will involve designing, building and testing a miniature microbial fuel cell using a new species of microorganisms that promises high efficiency and long lifetime. The new device offer unique advantages of fast start-up, high sensitivity and superior microfluidic control over the measured microenvironment, which makes them good candidates for rapid screening of electrode materials, bacterial strains and growth media. It will be made in the Centre of Hybrid Biodevices (Faculty of Physical Sciences and Engineering, University of Southampton) from polymer materials like PDMS. The eventual aim is to develop a system with the optimum combination of microorganism, ion exchange membrane and growth medium. After fabricating the cell, different bacteria and plankton species will be grown in the device and the microbial fuel cell characterized for open circuit voltage and power. It will also use photo-sensitive organisms and characterize the power produced by the device in response to optical illumination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our generation of computational scientists is living in an exciting time: not only do we get to pioneer important algorithms and computations, we also get to set standards on how computational research should be conducted and published. From Euclid’s reasoning and Galileo’s experiments, it took hundreds of years for the theoretical and experimental branches of science to develop standards for publication and peer review. Computational science, rightly regarded as the third branch, can walk the same road much faster. The success and credibility of science are anchored in the willingness of scientists to expose their ideas and results to independent testing and replication by other scientists. This requires the complete and open exchange of data, procedures and materials. The idea of a “replication by other scientists” in reference to computations is more commonly known as “reproducible research”. In this context the journal “EAI Endorsed Transactions on Performance & Modeling, Simulation, Experimentation and Complex Systems” had the exciting and original idea to make the scientist able to submit simultaneously the article and the computation materials (software, data, etc..) which has been used to produce the contents of the article. The goal of this procedure is to allow the scientific community to verify the content of the paper, reproducing it in the platform independently from the OS chosen, confirm or invalidate it and especially allow its reuse to reproduce new results. This procedure is therefore not helpful if there is no minimum methodological support. In fact, the raw data sets and the software are difficult to exploit without the logic that guided their use or their production. This led us to think that in addition to the data sets and the software, an additional element must be provided: the workflow that relies all of them.