5 resultados para real-time data
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Analisi e sviluppo di procedure di importazione dati per un integratore di annunci immobiliari dedicato alla vendita di soggiorni turistici in case vacanza. Il documento tratta inoltre l'implementazione di un Web Service conforme all'architettura RESTful per l'accesso e l'esportazione dei dati a soggetti terzi autorizzati tramite Digest Authentication.
Resumo:
Analisi e applicazione dei processi di data mining al flusso informativo di sistemi real-time. Implementazione e analisi di un algoritmo autoadattivo per la ricerca di frequent patterns su macchine automatiche.
Resumo:
La tesi da me svolta durante questi ultimi sei mesi è stata sviluppata presso i laboratori di ricerca di IMA S.p.a.. IMA (Industria Macchine Automatiche) è una azienda italiana che naque nel 1961 a Bologna ed oggi riveste il ruolo di leader mondiale nella produzione di macchine automatiche per il packaging di medicinali. Vorrei subito mettere in luce che in tale contesto applicativo l’utilizzo di algoritmi di data-mining risulta essere ostico a causa dei due ambienti in cui mi trovo. Il primo è quello delle macchine automatiche che operano con sistemi in tempo reale dato che non presentano a pieno le risorse di cui necessitano tali algoritmi. Il secondo è relativo alla produzione di farmaci in quanto vige una normativa internazionale molto restrittiva che impone il tracciamento di tutti gli eventi trascorsi durante l’impacchettamento ma che non permette la visione al mondo esterno di questi dati sensibili. Emerge immediatamente l’interesse nell’utilizzo di tali informazioni che potrebbero far affiorare degli eventi riconducibili a un problema della macchina o a un qualche tipo di errore al fine di migliorare l’efficacia e l’efficienza dei prodotti IMA. Lo sforzo maggiore per riuscire ad ideare una strategia applicativa è stata nella comprensione ed interpretazione dei messaggi relativi agli aspetti software. Essendo i dati molti, chiusi, e le macchine con scarse risorse per poter applicare a dovere gli algoritmi di data mining ho provveduto ad adottare diversi approcci in diversi contesti applicativi: • Sistema di identificazione automatica di errore al fine di aumentare di diminuire i tempi di correzione di essi. • Modifica di un algoritmo di letteratura per la caratterizzazione della macchina. La trattazione è così strutturata: • Capitolo 1: descrive la macchina automatica IMA Adapta della quale ci sono stati forniti i vari file di log. Essendo lei l’oggetto di analisi per questo lavoro verranno anche riportati quali sono i flussi di informazioni che essa genera. • Capitolo 2: verranno riportati degli screenshoot dei dati in mio possesso al fine di, tramite un’analisi esplorativa, interpretarli e produrre una formulazione di idee/proposte applicabili agli algoritmi di Machine Learning noti in letteratura. • Capitolo 3 (identificazione di errore): in questo capitolo vengono riportati i contesti applicativi da me progettati al fine di implementare una infrastruttura che possa soddisfare il requisito, titolo di questo capitolo. • Capitolo 4 (caratterizzazione della macchina): definirò l’algoritmo utilizzato, FP-Growth, e mostrerò le modifiche effettuate al fine di poterlo impiegare all’interno di macchine automatiche rispettando i limiti stringenti di: tempo di cpu, memoria, operazioni di I/O e soprattutto la non possibilità di aver a disposizione l’intero dataset ma solamente delle sottoporzioni. Inoltre verranno generati dei DataSet per il testing di dell’algoritmo FP-Growth modificato.
Resumo:
The newly inaugurated Navile District of the University of Bologna is a complex created along the Navile canal, that now houses various teaching and research activities for the disciplines of Chemistry, Industrial Chemistry, Pharmacy, Biotechnology and Astronomy. A Building Information Modeling system (BIM) gives staff of the Navile campus several ways to monitor buildings in the complex throughout their life cycle, one of which is the ability to access real-time environmental data such as room temperature, humidity, air composition, and more, thereby simplifying operations like finding faults and optimizing environmental resource usage. But smart features at Navile are not only available to the staff: AlmaMap Navile is a web application, whose development is documented in this thesis, that powers the public touch kiosks available throughout the campus, offering maps of the district and indications on how to reach buildings and spaces. Even if these two systems, BIM and AlmaMap, don't seem to have many similarities, they share the common intent of promoting awareness for informed decision making in the campus, and they do it while relying on web standards for communication. This opens up interesting possibilities, and is the idea behind AlmaMap Navile 2.0, an app that interfaces with the BIM system and combines real-time sensor data with a comfort calculation algorithm, giving users the ability not just to ask for directions to a space, but also to see its comfort level in advance and, should they want to, check environmental measurements coming from each sensor in a granular manner. The end result is a first step towards building a smart campus Digital Twin, that can support all the people who are part of the campus life in their daily activities, improving their efficiency and satisfaction, giving them the ability to make informed decisions, and promoting awareness and sustainability.
Resumo:
Progettazione e implementazione dei moduli di visualizzazione, memorizzazione e analisi di un sistema software di acquisizione dati in real-time da dispositivi prodotti da Elements s.r.l. La tesi mostra tutte le fasi di analisi, progettazione, implementazione e testing dei moduli sviluppati.