12 resultados para reaching task
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
La decodifica dei segnali elettroencefalografici (EEG) consiste nell’analisi del segnale per classificare le azioni o lo stato cognitivo di un soggetto. Questi studi possono permettere di comprendere meglio i correlati neurali alla base del movimento, oltre che avere un’applicazione pratica nelle Brain Computer Interfaces. In questo ambito, di rilievo sono le reti neurali convoluzionali (Convolutional Neural Networks, CNNs), che grazie alle loro elevate performance stanno acquisendo importanza nella decodifica del segnale EEG. In questo elaborato di tesi è stata addestrata una CNN precedentemente proposta in letteratura, EEGNet, per classificare i segnali EEG acquisiti durante movimenti di reaching del braccio dominante, sulla base della posizione del target da raggiungere. I dati sono stati acquisiti su dieci soggetti grazie al protocollo sviluppato in questo lavoro, in cui 5 led disposti su una semicirconferenza rappresentano i target del movimento e l’accensione casuale di un led identifica il target da raggiungere in ciascuna prova. I segnali EEG acquisiti sono stati quindi ricampionati, filtrati e suddivisi in epoche di due secondi attorno all’inizio di ciascun movimento, rimuovendo gli artefatti oculari mediante ICA. La rete è stata valutata in tre task di classificazione, uno a cinque classi (una posizione target per classe) e due a tre classi (raggruppando più posizioni target per classe). Per ogni task, la rete è stata addestrata in cross-validazione utilizzando un approccio within-subject. Con questo approccio sono state addestrate e validate 15 CNNs diverse per ogni soggetto. Infine, è stato calcolato l’F1 score per ciascun task di classificazione, mediando i risultati sui soggetti, per valutare quantitativamente le performance della CNN che sono risultati migliori nel classificare target disposti a destra e a sinistra.
Resumo:
La seguente tesi è stata sviluppata all’interno del progetto Neurograsp il cui obiettivo è individuare una correlazione tra l’attività muscolare e l’attivazione delle diverse aree corticali. Sono state impiegate diverse tecniche per acquisire segnali dal soggetto durante il task motorio da lui eseguito e questa tesi è incentrata sull’analisi dei dati acquisiti tramite Elettromiografia ad alta densità. I segnali elaborati sono quelli relativi all’attività muscolare di deltoide anteriore e posteriore, muscoli essenziali per il movimento di reaching. Il seguente lavoro è incentrato sull’elaborazione dei dati grezzi dall’HD-EMG e sulla loro rappresentazione con lo scopo di trarre conclusioni riguardo i pattern dell’attività muscolare e l’apprendimento motorio. In definitiva l’analisi qui descritta mira a descrivere nel contesto del progetto Neurograsp come si comportano i deltoidi riportando in dettaglio esempi dei risultati più significativi.
Resumo:
Background L’identificazione degli eventi temporali permette nell’analisi del movimento di valutare la qualità del gesto motorio e si offre in aiuto alla formulazione di diagnosi cliniche, valutazioni di un percorso riabilitativo e in ambito ortopedico per la creazione di protesi. L’uso sempre più diffuso dei sensori inerziali nell’analisi del movimento ha portato alla nascita di numerosi algoritmi per identificare gli eventi temporali; tuttavia, molti di questi sono stati sviluppati per la ricerca dei gate event sull’analisi del cammino, mentre non sono molti quelli dedicati allo studio dell’arto superiore, dove il reaching è il task motorio più studiato. Obiettivo tesi Proporre un metodo per l’identificazione degli eventi temporali su movimento di reaching con l’uso di soli sensori inerziali. Metodo All’interno del progetto Neurograsp, che è uno studio di analisi del movimento di reaching condotto presso il Dipartimento di Ingegneria dell’Energia Elettrica e dell’Informazione Guglielmo Marconi sono stati considerati i dati relativi alla stereofotogrammetria e ai sensori inerziali. L’analisi ha riguardato tre soggetti sani destrorsi. È stato considerato il sistema di stereofotogrammetria come gold standard con cui si sono rilevati gli eventi temporali ricercati del task motorio e successivamente si è implementato un metodo per identificare gli stessi eventi temporali tramite l’uso dei soli sensori inerziali. L’analisi è terminata con il confronto dei risultati. Risultati Si sono effettuate le analisi dei risultati in termini di classificazione dei times individuati dall’algoritmo come corretti, falsi positivi o falsi negativi e sulla quantificazione dell’errore assoluto sui valori identificati correttamente.
Resumo:
In the collective imaginaries a robot is a human like machine as any androids in science fiction. However the type of robots that you will encounter most frequently are machinery that do work that is too dangerous, boring or onerous. Most of the robots in the world are of this type. They can be found in auto, medical, manufacturing and space industries. Therefore a robot is a system that contains sensors, control systems, manipulators, power supplies and software all working together to perform a task. The development and use of such a system is an active area of research and one of the main problems is the development of interaction skills with the surrounding environment, which include the ability to grasp objects. To perform this task the robot needs to sense the environment and acquire the object informations, physical attributes that may influence a grasp. Humans can solve this grasping problem easily due to their past experiences, that is why many researchers are approaching it from a machine learning perspective finding grasp of an object using information of already known objects. But humans can select the best grasp amongst a vast repertoire not only considering the physical attributes of the object to grasp but even to obtain a certain effect. This is why in our case the study in the area of robot manipulation is focused on grasping and integrating symbolic tasks with data gained through sensors. The learning model is based on Bayesian Network to encode the statistical dependencies between the data collected by the sensors and the symbolic task. This data representation has several advantages. It allows to take into account the uncertainty of the real world, allowing to deal with sensor noise, encodes notion of causality and provides an unified network for learning. Since the network is actually implemented and based on the human expert knowledge, it is very interesting to implement an automated method to learn the structure as in the future more tasks and object features can be introduced and a complex network design based only on human expert knowledge can become unreliable. Since structure learning algorithms presents some weaknesses, the goal of this thesis is to analyze real data used in the network modeled by the human expert, implement a feasible structure learning approach and compare the results with the network designed by the expert in order to possibly enhance it.
Resumo:
La tesi riguarda lo sviluppo di un'applicazione che estende la possibilità di effettuare i caricamenti dei package di SAP BPC ai dispositivi mobile, fino ad ora questo era possibile solo attraverso l'interfaccia di Microsoft Excel.
Resumo:
Synthetic Biology is a relatively new discipline, born at the beginning of the New Millennium, that brings the typical engineering approach (abstraction, modularity and standardization) to biotechnology. These principles aim to tame the extreme complexity of the various components and aid the construction of artificial biological systems with specific functions, usually by means of synthetic genetic circuits implemented in bacteria or simple eukaryotes like yeast. The cell becomes a programmable machine and its low-level programming language is made of strings of DNA. This work was performed in collaboration with researchers of the Department of Electrical Engineering of the University of Washington in Seattle and also with a student of the Corso di Laurea Magistrale in Ingegneria Biomedica at the University of Bologna: Marilisa Cortesi. During the collaboration I contributed to a Synthetic Biology project already started in the Klavins Laboratory. In particular, I modeled and subsequently simulated a synthetic genetic circuit that was ideated for the implementation of a multicelled behavior in a growing bacterial microcolony. In the first chapter the foundations of molecular biology are introduced: structure of the nucleic acids, transcription, translation and methods to regulate gene expression. An introduction to Synthetic Biology completes the section. In the second chapter is described the synthetic genetic circuit that was conceived to make spontaneously emerge, from an isogenic microcolony of bacteria, two different groups of cells, termed leaders and followers. The circuit exploits the intrinsic stochasticity of gene expression and intercellular communication via small molecules to break the symmetry in the phenotype of the microcolony. The four modules of the circuit (coin flipper, sender, receiver and follower) and their interactions are then illustrated. In the third chapter is derived the mathematical representation of the various components of the circuit and the several simplifying assumptions are made explicit. Transcription and translation are modeled as a single step and gene expression is function of the intracellular concentration of the various transcription factors that act on the different promoters of the circuit. A list of the various parameters and a justification for their value closes the chapter. In the fourth chapter are described the main characteristics of the gro simulation environment, developed by the Self Organizing Systems Laboratory of the University of Washington. Then, a sensitivity analysis performed to pinpoint the desirable characteristics of the various genetic components is detailed. The sensitivity analysis makes use of a cost function that is based on the fraction of cells in each one of the different possible states at the end of the simulation and the wanted outcome. Thanks to a particular kind of scatter plot, the parameters are ranked. Starting from an initial condition in which all the parameters assume their nominal value, the ranking suggest which parameter to tune in order to reach the goal. Obtaining a microcolony in which almost all the cells are in the follower state and only a few in the leader state seems to be the most difficult task. A small number of leader cells struggle to produce enough signal to turn the rest of the microcolony in the follower state. It is possible to obtain a microcolony in which the majority of cells are followers by increasing as much as possible the production of signal. Reaching the goal of a microcolony that is split in half between leaders and followers is comparatively easy. The best strategy seems to be increasing slightly the production of the enzyme. To end up with a majority of leaders, instead, it is advisable to increase the basal expression of the coin flipper module. At the end of the chapter, a possible future application of the leader election circuit, the spontaneous formation of spatial patterns in a microcolony, is modeled with the finite state machine formalism. The gro simulations provide insights into the genetic components that are needed to implement the behavior. In particular, since both the examples of pattern formation rely on a local version of Leader Election, a short-range communication system is essential. Moreover, new synthetic components that allow to reliably downregulate the growth rate in specific cells without side effects need to be developed. In the appendix are listed the gro code utilized to simulate the model of the circuit, a script in the Python programming language that was used to split the simulations on a Linux cluster and the Matlab code developed to analyze the data.
Resumo:
L'esigenza di poter usufruire in clinica di uno strumento per l'analisi cinematica dell'arto superiore altamente attendibile che fornisca dati clinicamente validi e facili da interpretare e rapidamente applicabile dal personale medico competente, ha posto le basi per la realizzazione del modello che in questa tesi viene proposto. L'obiettivo è stato definire un metodo di misura per l'analisi delle traiettorie dell'arto superiore basato su un modello di markerizzazione che sia clinicamente attuabile e descriva la catena completa dell'estremità superiore interessata nel gesto di “reaching” indipendentemente dalla patologia.
Resumo:
In questa tesi sono stati apportati due importanti contributi nel campo degli acceleratori embedded many-core. Abbiamo implementato un runtime OpenMP ottimizzato per la gestione del tasking model per sistemi a processori strettamente accoppiati in cluster e poi interconnessi attraverso una network on chip. Ci siamo focalizzati sulla loro scalabilità e sul supporto di task di granularità fine, come è tipico nelle applicazioni embedded. Il secondo contributo di questa tesi è stata proporre una estensione del runtime di OpenMP che cerca di prevedere la manifestazione di errori dati da fenomeni di variability tramite una schedulazione efficiente del carico di lavoro.
Resumo:
In recent years, Deep Learning techniques have shown to perform well on a large variety of problems both in Computer Vision and Natural Language Processing, reaching and often surpassing the state of the art on many tasks. The rise of deep learning is also revolutionizing the entire field of Machine Learning and Pattern Recognition pushing forward the concepts of automatic feature extraction and unsupervised learning in general. However, despite the strong success both in science and business, deep learning has its own limitations. It is often questioned if such techniques are only some kind of brute-force statistical approaches and if they can only work in the context of High Performance Computing with tons of data. Another important question is whether they are really biologically inspired, as claimed in certain cases, and if they can scale well in terms of "intelligence". The dissertation is focused on trying to answer these key questions in the context of Computer Vision and, in particular, Object Recognition, a task that has been heavily revolutionized by recent advances in the field. Practically speaking, these answers are based on an exhaustive comparison between two, very different, deep learning techniques on the aforementioned task: Convolutional Neural Network (CNN) and Hierarchical Temporal memory (HTM). They stand for two different approaches and points of view within the big hat of deep learning and are the best choices to understand and point out strengths and weaknesses of each of them. CNN is considered one of the most classic and powerful supervised methods used today in machine learning and pattern recognition, especially in object recognition. CNNs are well received and accepted by the scientific community and are already deployed in large corporation like Google and Facebook for solving face recognition and image auto-tagging problems. HTM, on the other hand, is known as a new emerging paradigm and a new meanly-unsupervised method, that is more biologically inspired. It tries to gain more insights from the computational neuroscience community in order to incorporate concepts like time, context and attention during the learning process which are typical of the human brain. In the end, the thesis is supposed to prove that in certain cases, with a lower quantity of data, HTM can outperform CNN.
Resumo:
I neuroni in alcune regioni del nostro cervello mostrano una risposta a stimoli multisensoriali (ad es. audio-visivi) temporalmente e spazialmente coincidenti maggiore della risposta agli stessi stimoli presi singolarmente (integrazione multisensoriale). Questa abilità può essere sfruttata per compensare deficit unisensoriali, attraverso training multisensoriali che promuovano il rafforzamento sinaptico all’interno di circuiti comprendenti le regioni multisensoriali stimolate. Obiettivo della presente tesi è stato quello di studiare quali strutture e circuiti possono essere stimolate e rinforzate da un training multisensoriale audio-visivo. A tale scopo, sono stati analizzati segnali elettroencefalografici (EEG) registrati durante due diversi task di discriminazione visiva (discriminazione della direzione di movimento e discriminazione di orientazione di una griglia) eseguiti prima e dopo un training audio-visivo con stimoli temporalmente e spazialmente coincidenti, per i soggetti sperimentali, o spazialmente disparati, per i soggetti di controllo. Dai segnali EEG di ogni soggetto è stato ricavato il potenziale evento correlato (ERP) sullo scalpo, di cui si è analizzata la componente N100 (picco in 140÷180 ms post stimolo) verificandone variazioni pre/post training mediante test statistici. Inoltre, è stata ricostruita l’attivazione delle sorgenti corticali in 6239 voxel (suddivisi tra le 84 ROI coincidenti con le Aree di Brodmann) con l’ausilio del software sLORETA. Differenti attivazioni delle ROI pre/post training in 140÷180 ms sono state evidenziate mediante test statistici. I risultati suggeriscono che il training multisensoriale abbia rinforzato i collegamenti sinaptici tra il Collicolo Superiore e il Lobulo Parietale Inferiore (nell’area Area di Brodmann 7), una regione con funzioni visuo-motorie e di attenzione spaziale.