6 resultados para rank-based procedure
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Hybrid vehicles represent the future for automakers, since they allow to improve the fuel economy and to reduce the pollutant emissions. A key component of the hybrid powertrain is the Energy Storage System, that determines the ability of the vehicle to store and reuse energy. Though electrified Energy Storage Systems (ESS), based on batteries and ultracapacitors, are a proven technology, Alternative Energy Storage Systems (AESS), based on mechanical, hydraulic and pneumatic devices, are gaining interest because they give the possibility of realizing low-cost mild-hybrid vehicles. Currently, most literature of design methodologies focuses on electric ESS, which are not suitable for AESS design. In this contest, The Ohio State University has developed an Alternative Energy Storage System design methodology. This work focuses on the development of driving cycle analysis methodology that is a key component of Alternative Energy Storage System design procedure. The proposed methodology is based on a statistical approach to analyzing driving schedules that represent the vehicle typical use. Driving data are broken up into power events sequence, namely traction and braking events, and for each of them, energy-related and dynamic metrics are calculated. By means of a clustering process and statistical synthesis methods, statistically-relevant metrics are determined. These metrics define cycle representative braking events. By using these events as inputs for the Alternative Energy Storage System design methodology, different system designs are obtained. Each of them is characterized by attributes, namely system volume and weight. In the last part the work, the designs are evaluated in simulation by introducing and calculating a metric related to the energy conversion efficiency. Finally, the designs are compared accounting for attributes and efficiency values. In order to automate the driving data extraction and synthesis process, a specific script Matlab based has been developed. Results show that the driving cycle analysis methodology, based on the statistical approach, allows to extract and synthesize cycle representative data. The designs based on cycle statistically-relevant metrics are properly sized and have satisfying efficiency values with respect to the expectations. An exception is the design based on the cycle worst-case scenario, corresponding to same approach adopted by the conventional electric ESS design methodologies. In this case, a heavy system with poor efficiency is produced. The proposed new methodology seems to be a valid and consistent support for Alternative Energy Storage System design.
Resumo:
This master’s thesis describes the research done at the Medical Technology Laboratory (LTM) of the Rizzoli Orthopedic Institute (IOR, Bologna, Italy), which focused on the characterization of the elastic properties of the trabecular bone tissue, starting from october 2012 to present. The approach uses computed microtomography to characterize the architecture of trabecular bone specimens. With the information obtained from the scanner, specimen-specific models of trabecular bone are generated for the solution with the Finite Element Method (FEM). Along with the FEM modelling, mechanical tests are performed over the same reconstructed bone portions. From the linear-elastic stage of mechanical tests presented by experimental results, it is possible to estimate the mechanical properties of the trabecular bone tissue. After a brief introduction on the biomechanics of the trabecular bone (chapter 1) and on the characterization of the mechanics of its tissue using FEM models (chapter 2), the reliability analysis of an experimental procedure is explained (chapter 3), based on the high-scalable numerical solver ParFE. In chapter 4, the sensitivity analyses on two different parameters for micro-FEM model’s reconstruction are presented. Once the reliability of the modeling strategy has been shown, a recent layout for experimental test, developed in LTM, is presented (chapter 5). Moreover, the results of the application of the new layout are discussed, with a stress on the difficulties connected to it and observed during the tests. Finally, a prototype experimental layout for the measure of deformations in trabecular bone specimens is presented (chapter 6). This procedure is based on the Digital Image Correlation method and is currently under development in LTM.
Resumo:
Questo lavoro di tesi si inserisce in un contesto di ricerca molto attuale, il quale, studia nuove procedure sintetiche sostenibili per la preparazione di strutture poliuretaniche. Partendo dall’etilene carbonato e dall’esametilendiammina, due molecole che possono essere ricavate da fonti rinnovabili, sono state ottimizzate la sintesi e la purificazione di un carbammato: bis(2-idrossietil)-esan-1,6-diildicarbammato (BHEDC), senza l’impiego di solventi ed in condizioni blande. Il BHEDC è conosciuto in letteratura, ma è poco studiato e non viene attualmente utilizzato come monomero. In questo lavoro il bis(2-idrossietil)-esan-1,6-diildicarbammato è stato polimerizzato in massa con diverse percentuali di bis(2-idrossietil)-tereftalato (BHET), il quale non è ricavabile da fonti naturali ma è ottenibile dal riciclo chimico del Poli-Etilene Tereftalato (PET). Sono state successivamente analizzate la struttura chimica e le proprietà termiche nonché spettroscopiche dei nuovi composti poliuretanici, così da poterne definire le correlazioni tra la struttura e le prestazioni finali. Infine, è stata messa a punto una procedura di tipo one-pot per la preparazione dei poliuretani sopra citati; questa prevede la sintesi diretta dei polimeri senza la necessità dello stadio di purificazione del bis(2-idrossietil)-esan-1,6-diildicarbammato.
Resumo:
In this Bachelor Thesis I want to provide readers with tools and scripts for the control of a 7DOF manipulator, backed up by some theory of Robotics and Computer Science, in order to better contextualize the work done. In practice, we will see most common software, and developing environments, used to cope with our task: these include ROS, along with visual simulation by VREP and RVIZ, and an almost "stand-alone" ROS extension called MoveIt!, a very complete programming interface for trajectory planning and obstacle avoidance. As we will better appreciate and understand in the introduction chapter, the capability of detecting collision objects through a camera sensor, and re-plan to the desired end-effector pose, are not enough. In fact, this work is implemented in a more complex system, where recognition of particular objects is needed. Through a package of ROS and customized scripts, a detailed procedure will be provided on how to distinguish a particular object, retrieve its reference frame with respect to a known one, and then allow navigation to that target. Together with technical details, the aim is also to report working scripts and a specific appendix (A) you can refer to, if desiring to put things together.
Resumo:
Most of the existing open-source search engines, utilize keyword or tf-idf based techniques to find relevant documents and web pages relative to an input query. Although these methods, with the help of a page rank or knowledge graphs, proved to be effective in some cases, they often fail to retrieve relevant instances for more complicated queries that would require a semantic understanding to be exploited. In this Thesis, a self-supervised information retrieval system based on transformers is employed to build a semantic search engine over the library of Gruppo Maggioli company. Semantic search or search with meaning can refer to an understanding of the query, instead of simply finding words matches and, in general, it represents knowledge in a way suitable for retrieval. We chose to investigate a new self-supervised strategy to handle the training of unlabeled data based on the creation of pairs of ’artificial’ queries and the respective positive passages. We claim that by removing the reliance on labeled data, we may use the large volume of unlabeled material on the web without being limited to languages or domains where labeled data is abundant.
Resumo:
Plastics are polymers of conventional and extensive use in our day-to-day life. This is due to their light weight, adaptability to different uses and low prices. A downside of such extensive use is the environmental pollution arising from plastic production and disposal. Indeed, many commodity polymers are produced from non-renewable resources while other do not bio-degrade after their end-of-life disposal. Consequently, the ideal polymer comes from renewable raw materials and bio-degrades after its disposal, meaning that it would do little or no harm to the environment from the beginning to the end of its life cycle. In this thesis project a class of bio-based and bio-degradable co-polymers, namely poly(ester-amide)s, was investigated because of their tunable mechanical and bio-degradation properties as well as their renewable origin. Such polymers were synthetized and characterized thermically and mechanically. Furthermore, a scale-up procedure was developed and applied to one polymer and processing trials were made with the material obtained after scale-up.