2 resultados para random forest regression
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
questa tesi propone una prospettiva completa sull'accelerometro, descrivendone le caratteristiche le tipologie, gli utilizzi che se ne possono fare e gli ambiti di applicazione. Sviluppa anche argomenti che riguardano interfacce e piattaforme per l'interazione con il sensore e algoritmi machine learning.
Resumo:
Il framework in oggetto, è un ambiente ideato con lo scopo di applicare tecniche di Machine Learning (in particolare le Random Forest) alle funzionalità dell'algoritmo di stereo matching SGM (Semi Global Matching), al fine di incrementarne l'accuratezza in versione standard. Scopo della presente tesi è quello di modificare alcune impostazioni di tale framework rendendolo un ambiente che meglio si adatti alla direzionalità delle scanline (introducendo finestre di supporto rettangolari e ortogonali e il training di foreste separate in base alla singola scanline) e ampliarne le funzionalità tramite l'aggiunta di alcune nuove feature, quali la distanza dal più vicino edge direzionale e la distintività calcolate sulle immagini Left della stereo pair e gli edge direzionali sulle mappe di disparità. Il fine ultimo sarà quello di eseguire svariati test sui dataset Middlebury 2014 e KITTI e raccogliere dati che descrivano l'andamento in positivo o negativo delle modifiche effettuate.