9 resultados para rail wheel flat, vibration monitoring, wavelet approaches, daubechies wavelets, signal processing

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Industrial companies, particularly those with induction motors and gearboxes as integral components of their systems, are utilizing Condition Monitoring (CM) systems more frequently in order to discover the need for maintenance in advance, as traditional maintenance only performs tasks when a failure has been identified. Utilizing a CM system is essential to boost productivity and minimize long-term failures that result in financial loss. The more exact and practical the CM system, the better the data analysis, which adds to a more precise maintenance forecast. This thesis project is a cooperation with PEI Vibration Monitoring s.r.l. to design and construct a low-cost vibrational condition monitoring system to check the health of induction motors and gearboxes automatically. Moreover, according to the company's request, such a system should have specs comparable to NI 9234, one of the company's standard Data Acquisition (DAQ) boards, but at a significantly cheaper price. Additionally, PEI VM Company has supplied all hardware and electronic components. The suggested CM system is capable of highprecision autonomous monitoring of induction motors and gearboxes, and it consists of a Raspberry Pi 3B and MCC 172 DAQ board.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural Health Monitoring (SHM) is the process of characterization for existing civil structures that proposes for damage detection and structural identification. It's based firstly on the collection of data that are inevitably affected by noise. In this work a procedure to denoise the measured acceleration signal is proposed, based on EMD-thresholding techniques. Moreover the velocity and displacement responses are estimated, starting from measured acceleration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questo elaborato vengono analizzate differenti tecniche per la detection di jammer attivi e costanti in una comunicazione satellitare in uplink. Osservando un numero limitato di campioni ricevuti si vuole identificare la presenza di un jammer. A tal fine sono stati implementati i seguenti classificatori binari: support vector machine (SVM), multilayer perceptron (MLP), spectrum guarding e autoencoder. Questi algoritmi di apprendimento automatico dipendono dalle features che ricevono in ingresso, per questo motivo è stata posta particolare attenzione alla loro scelta. A tal fine, sono state confrontate le accuratezze ottenute dai detector addestrati utilizzando differenti tipologie di informazione come: i segnali grezzi nel tempo, le statistical features, le trasformate wavelet e lo spettro ciclico. I pattern prodotti dall’estrazione di queste features dai segnali satellitari possono avere dimensioni elevate, quindi, prima della detection, vengono utilizzati i seguenti algoritmi per la riduzione della dimensionalità: principal component analysis (PCA) e linear discriminant analysis (LDA). Lo scopo di tale processo non è quello di eliminare le features meno rilevanti, ma combinarle in modo da preservare al massimo l’informazione, evitando problemi di overfitting e underfitting. Le simulazioni numeriche effettuate hanno evidenziato come lo spettro ciclico sia in grado di fornire le features migliori per la detection producendo però pattern di dimensioni elevate, per questo motivo è stato necessario l’utilizzo di algoritmi di riduzione della dimensionalità. In particolare, l'algoritmo PCA è stato in grado di estrarre delle informazioni migliori rispetto a LDA, le cui accuratezze risentivano troppo del tipo di jammer utilizzato nella fase di addestramento. Infine, l’algoritmo che ha fornito le prestazioni migliori è stato il Multilayer Perceptron che ha richiesto tempi di addestramento contenuti e dei valori di accuratezza elevati.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le wavelet sono una nuova famiglia di funzioni matematiche che permettono di decomporre una data funzione nelle sue diverse componenti in frequenza. Esse combinano le proprietà dell’ortogonalità, il supporto compatto, la localizzazione in tempo e frequenza e algoritmi veloci. Sono considerate, perciò, uno strumento versatile sia per il contenuto matematico, sia per le applicazioni. Nell’ultimo decennio si sono diffuse e imposte come uno degli strumenti migliori nell’analisi dei segnali, a fianco, o addirittura come sostitute, dei metodi di Fourier. Si parte dalla nascita di esse (1807) attribuita a J. Fourier, si considera la wavelet di A. Haar (1909) per poi incentrare l’attenzione sugli anni ’80, in cui J. Morlet e A. Grossmann definiscono compiutamente le wavelet nel campo della fisica quantistica. Altri matematici e scienziati, nel corso del Novecento, danno il loro contributo a questo tipo di funzioni matematiche. Tra tutti emerge il lavoro (1987) della matematica e fisica belga, I. Daubechies, che propone le wavelet a supporto compatto, considerate la pietra miliare delle applicazioni wavelet moderne. Dopo una trattazione matematica delle wavalet, dei relativi algoritmi e del confronto con il metodo di Fourier, si passano in rassegna le principali applicazioni di esse nei vari campi: compressione delle impronte digitali, compressione delle immagini, medicina, finanza, astonomia, ecc. . . . Si riserva maggiore attenzione ed approfondimento alle applicazioni delle wavelet in campo sonoro, relativamente alla compressione audio, alla rimozione del rumore e alle tecniche di rappresentazione del segnale. In conclusione si accenna ai possibili sviluppi e impieghi delle wavelet nel futuro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a program for simulations of vehicle-track and vehicle-trackstructure dynamic interaction . The method used is computationally efficient in the sense that a reduced number of coordinates is sufficient and doesn’t require high efficiency computers. The method proposes a modal substructuring approach of the system by modelling rails , sleepers and underlying structure with modal coordinates, the vehicle with physical lumped elements coordinates and by introducing interconnection elements between these structures (wheel-rail contact, railpads and ballast) by means of their interaction forces. The Frequency response function (FRF) is also calculated for both cases of track over a structure (a bridge, a viaduct ...) and for the simple vehicle-track program; for each case the vehicle effect on the FRF is then analyzed through the comparison of the FRFs obtained introducing or not a simplified vehicle on the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Questo elaborato si concentra sullo studio della trasformata di Fourier e della trasformata Wavelet. Nella prima parte della tesi si analizzano gli aspetti fondamentali della trasformata di Fourier. Si definisce poi la trasformata di Fourier su gruppi abeliani finiti, richiamando opportunamente la struttura di tali gruppi. Si mostra che calcolare la trasformata di Fourier nel quoziente richiede un minor numero di operazioni rispetto a calcolarla direttamente nel gruppo di partenza. L'ultima parte dell'elaborato si occupa dello studio delle Wavelet, dette ondine. Viene presentato quindi il sistema di Haar che permette di definire una funzione come serie di funzioni di Haar in alternativa alla serie di Fourier. Si propone poi un vero e proprio metodo per la costruzione delle ondine e si osserva che tale costruzione è strettamente legata all'analisi multirisoluzione. Un ruolo cruciale viene svolto dall'identità di scala, un'identità algebrica che permette di definire certi coefficienti che determinano completamente le ondine. Interviene poi la trasformata di Fourier che riduce la ricerca dei coefficienti sopra citati, alla ricerca di certe funzioni opportune che determinano esplicitamente le Wavelet. Non tutte le scelte di queste funzioni sono accettabili. Ci sono vari approcci, qui viene presentato l'approccio di Ingrid Daubechies. Le Wavelet costituiscono basi per lo spazio di funzioni a quadrato sommabile e sono particolarmente interessanti per la decomposizione dei segnali. Sono quindi in relazione con l'analisi armonica e sono adottate in un gran numero di applicazioni. Spesso sostituiscono la trasformata di Fourier convenzionale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As predictive maintenance becomes more and more relevant in industrial environment, the possible range of applications for this maintenance strategy grows. The progresses in components technology and their reduction in price, together with the late years' advances in machine learning and in computational power, are making the implementation of predictive maintenance possible in plants where it would have previously been unreasonably costly. This is leading major pharmaceutical industries to explore the possibility of the application of condition monitoring systems on progressively less and less critical equipment. The focus of this thesis is on the implementation of a system to gather vibrational data from the motors installed in a pre-existing machine using off-the-shelf components. The final goal for the system is to provide the necessary vibration data, in the form of frequency spectra, to a machine learning system developed by IMA Digital, which will be leveraging such data to predict possible upcoming faults and to give the final client all the information necessary to plan maintenance activity according to the estimated machine condition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Non-Indigenous Species (NIS) is defined as an organism, introduced outside its natural past or present range of distribution by humans, that successfully survives, reproduces, and establish in the new environment. Harbors and tourist marinas are considered NIS hotspots, as they are departure and arrival points for numerous vessels and because of the presence of free artificial substrates, which facilitate colonization by NIS. To early detect the arrival of new NIS, monitoring benthic communities in ports is essential. Autonomous Reef Monitoring Structures (ARMS) are standardized passive collectors that are used to assess marine benthic communities. Here we use an integrative approach based on multiple 3-month ARMS deployment (from April 2021 to October 2022) to characterize the benthic communities (with a focus on NIS) of two sites: a commercial port (Harbor) and a touristic Marina (Marina) of Ravenna. The colonizing sessile communities were assessed using percentage coverage of the taxa trough image analyses and vagile fauna (> 2 mm) was identified morphologically using a stereomicroscope and light microscope. Overall, 97 taxa were identified and 19 of them were NIS. All NIS were already observed in port environments in the Mediterranean Sea, but for the first time the presence of the polychaete Schistomeringos cf. japonica (Annenkova, 1937) was observed; however molecular analysis is needed to confirm its identity. Harbor and Marina host significantly different benthic communities, with significantly different abundance depending on the sampling period. While the differences between sites are related to their different environmental characteristic and their anthropogenic pressures, differences among times seems related to the different life cycle of the main abundant species. This thesis evidenced that ARMS, together with integrative taxonomic approaches, represent useful tools to early detect NIS and could be used for a long-term monitoring of their presence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Marine litter and plastics are a significant and growing marine contaminant that has become a global problem. Macrolitter is subject to fragmentation and degradation due to physical, chemical and biological processes, leading to the formation of micro-litter, the so-called microplastics. The purpose of this research is to assess marine litter pollution by using remote sensing tools to identify areas of macrolitter accumulation and to evaluate the concentrations of microplastics in different environmental matrices: water, sediment and biota (i.e. mussels and fish) and to contribute to the European project MAELSTROM (Smart technology for MArinE Litter SusTainable RemOval and Management). The aim is to monitor the presence of macro- and microlitter at two sites of the Venice coastal area: an abandoned mussel farm at sea and a lagoon site near the artificial Island of Sacca Fisola; The results showed that both study areas are characterised by high amounts of marine litter, but the type of observed litter is different. In fact, in the mussel farm area, most of the litter is linked to aquaculture activities (ropes, nets, mooring blocks and floating buoys). In the Venice lagoon site, the litter comes more from urban activities and from the city of Venice (car tyres, crates, wrecks, etc.). Microplastics is present in both sites and in all the analysed matrices. Generally, higher microplastics concentrations were found at Sacca Fisola (i.e., in surface waters, mussels and fish). Moreover, some differences were also observed in shapes and colours comparing the two sites. At Sacca Fisola, white irregular fragments predominate in water samples, blue filaments in sediment and mussels, and transparent irregular fragments in fish. At the Mussel Farm, blue filaments predominate in water, sediment and mussels, while flat black fragments predominate in fish. These differences are related to the different types of macrolitter that characterised the two areas.