4 resultados para q-Operators

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Questa Tesi aspira a mostrare un codice a livello di pacchetto, che abbia performance molto vicine a quello ottimo, per progetti di comunicazioni Satellitari. L’altro scopo di questa Tesi è quello di capire se rimane ancora molto più difficile maneggiare direttamente gli errori piuttosto che le erasures. Le applicazioni per comunicazioni satellitari ora come ora usano tutte packet erasure coding per codificare e decodificare l’informazione. La struttura dell’erasure decoding è molto semplice, perché abbiamo solamente bisogno di un Cyclic Redundancy Check (CRC) per realizzarla. Il problema nasce quando abbiamo pacchetti di dimensioni medie o piccole (per esempio più piccole di 100 bits) perché in queste situazioni il costo del CRC risulta essere troppo dispendioso. La soluzione la possiamo trovare utilizzando il Vector Symbol Decoding (VSD) per raggiungere le stesse performance degli erasure codes, ma senza la necessità di usare il CRC. Per prima cosa viene fatta una breve introduzione su come è nata e su come si è evoluta la codifica a livello di pacchetto. In seguito è stato introdotto il canale q-ary Symmetric Channel (qSC), con sia la derivazione della sua capacità che quella del suo Random Coding Bound (RCB). VSD è stato poi proposto con la speranza di superare in prestazioni il Verification Based Decoding (VBD) su il canale qSC. Infine, le effettive performance del VSD sono state stimate via simulazioni numeriche. I possibili miglioramenti delle performance, per quanto riguarda il VBD sono state discusse, come anche le possibili applicazioni future. Inoltre abbiamo anche risposto alla domande se è ancora così tanto più difficile maneggiare gli errori piuttosto che le erasure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we will discuss about a project started by the Emilia-Romagna Regional Government regarding the manage of the public transport. In particular we will perform a data mining analysis on the data-set of this project. After introducing the Weka software used to make our analysis, we will discover the most useful data mining techniques and algorithms; and we will show how these results can be used to violate the privacy of the same public transport operators. At the end, despite is off topic of this work, we will spend also a few words about how it's possible to prevent this kind of attack.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study is to analyse the regularity of a differential operator, the Kohn Laplacian, in two settings: the Heisenberg group and the strongly pseudoconvex CR manifolds. The Heisenberg group is defined as a space of dimension 2n+1 with a product. It can be seen in two different ways: as a Lie group and as the boundary of the Siegel UpperHalf Space. On the Heisenberg group there exists the tangential CR complex. From this we define its adjoint and the Kohn-Laplacian. Then we obtain estimates for the Kohn-Laplacian and find its solvability and hypoellipticity. For stating L^p and Holder estimates, we talk about homogeneous distributions. In the second part we start working with a manifold M of real dimension 2n+1. We say that M is a CR manifold if some properties are satisfied. More, we say that a CR manifold M is strongly pseudoconvex if the Levi form defined on M is positive defined. Since we will show that the Heisenberg group is a model for the strongly pseudo-convex CR manifolds, we look for an osculating Heisenberg structure in a neighborhood of a point in M, and we want this structure to change smoothly from a point to another. For that, we define Normal Coordinates and we study their properties. We also examinate different Normal Coordinates in the case of a real hypersurface with an induced CR structure. Finally, we define again the CR complex, its adjoint and the Laplacian operator on M. We study these new operators showing subelliptic estimates. For that, we don't need M to be pseudo-complex but we ask less, that is, the Z(q) and the Y(q) conditions. This provides local regularity theorems for Laplacian and show its hypoellipticity on M.