3 resultados para proton form factor
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Miniaturized flying robotic platforms, called nano-drones, have the potential to revolutionize the autonomous robots industry sector thanks to their very small form factor. The nano-drones’ limited payload only allows for a sub-100mW microcontroller unit for the on-board computations. Therefore, traditional computer vision and control algorithms are too computationally expensive to be executed on board these palm-sized robots, and we are forced to rely on artificial intelligence to trade off accuracy in favor of lightweight pipelines for autonomous tasks. However, relying on deep learning exposes us to the problem of generalization since the deployment scenario of a convolutional neural network (CNN) is often composed by different visual cues and different features from those learned during training, leading to poor inference performances. Our objective is to develop and deploy and adaptation algorithm, based on the concept of latent replays, that would allow us to fine-tune a CNN to work in new and diverse deployment scenarios. To do so we start from an existing model for visual human pose estimation, called PULPFrontnet, which is used to identify the pose of a human subject in space through its 4 output variables, and we present the design of our novel adaptation algorithm, which features automatic data gathering and labeling and on-device deployment. We therefore showcase the ability of our algorithm to adapt PULP-Frontnet to new deployment scenarios, improving the R2 scores of the four network outputs, with respect to an unknown environment, from approximately [−0.2, 0.4, 0.0,−0.7] to [0.25, 0.45, 0.2, 0.1]. Finally we demonstrate how it is possible to fine-tune our neural network in real time (i.e., under 76 seconds), using the target parallel ultra-low power GAP 8 System-on-Chip on board the nano-drone, and we show how all adaptation operations can take place using less than 2mWh of energy, a small fraction of the available battery power.
Resumo:
The multimodal biology activity of ergot alkaloids is known by humankind since middle ages. Synthetically modified ergot alkaloids are used for the treatment of various medical conditions. Despite the great progress in organic syntheses, the total synthesis of ergot alkaloids remains a great challenge due to the complexity of their polycyclic structure with multiple stereogenic centres. This project has developed a new domino reaction between indoles bearing a Michael acceptor at the 4 position and nitroethene, leading to potential ergot alkaloid precursors in highly enantioenriched form. The reaction was optimised and applied to a large variety of substrate with good results. Even if unfortunately all attempts to further modify the obtained polycyclic structure failed, it was found a reaction able to produce the diastereoisomer of the polycyclic product in excellent yields. The compounds synthetized were characterized by NMR and ESIMS analysis confirming the structure and their enantiomeric excess was determined by chiral stationary phase HPLC. The mechanism of the reaction was evaluated by DFT calculations, showing the formation of a key bicoordinated nitronate intermediate, and fully accounting for the results observed with all substrates. The relative and absolute configuration of the adducts were determined by a combination of NMR, ECD and computational methods.
Resumo:
With the development of the economy and society, air pollution has posed a huge threat to public health around the world, especially to people who live in urban areas. Typically, urban development patterns can be roughly divided into compact cities and urban sprawl. In recent years, the relationship between urban form and air quality (especially PM2.5) is gaining more and more attention from urban planners, environmentalists, and governments. This study is focusing on The New York metropolitan area and Shanghai city, which are both megacities but with different urban spatial forms. For both study areas,there are five main variables to measure the urban form metrics, naming Population Density, Artificial Land Area Per Ten Thousand People, Road Density, Green Land Area Ratio and Artificial Land Area Ratio. In addition, considering the impact of economic activities and public transportation, GDP per capita, Number of bus stop and Number of subway station are used as control variables. Based on the results of regression, a megacity like the New York metropolitan area with urban sprawl shows a low spatial correlation on PM2.5 concentration. Meanwhile, almost all the spatial form indicators effect on PM2.5 concentration is not significant. However, a compact megacity like Shanghai shows a diametrically opposite result. Urban form, especially population density, has a strong relationship with PM2.5 concentration. It can be predicted that a reduction in population density would lead to significant improvements on decrease the PM2.5 concentration in Shanghai. Meanwhile, increasing the ratio of green land and construction area per capita will get a positive influence on reducing PM2.5 concentration as well. Road density is not a significant factor for a megacity in both two urban forms. The way and type of energy used by vehicles on megacities maybe more critical.