3 resultados para process data
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Il presente elaborato esplora l’attitudine delle organizzazioni nei confronti dei processi di business che le sostengono: dalla semi-assenza di struttura, all’organizzazione funzionale, fino all’avvento del Business Process Reengineering e del Business Process Management, nato come superamento dei limiti e delle problematiche del modello precedente. All’interno del ciclo di vita del BPM, trova spazio la metodologia del process mining, che permette un livello di analisi dei processi a partire dagli event data log, ossia dai dati di registrazione degli eventi, che fanno riferimento a tutte quelle attività supportate da un sistema informativo aziendale. Il process mining può essere visto come naturale ponte che collega le discipline del management basate sui processi (ma non data-driven) e i nuovi sviluppi della business intelligence, capaci di gestire e manipolare l’enorme mole di dati a disposizione delle aziende (ma che non sono process-driven). Nella tesi, i requisiti e le tecnologie che abilitano l’utilizzo della disciplina sono descritti, cosi come le tre tecniche che questa abilita: process discovery, conformance checking e process enhancement. Il process mining è stato utilizzato come strumento principale in un progetto di consulenza da HSPI S.p.A. per conto di un importante cliente italiano, fornitore di piattaforme e di soluzioni IT. Il progetto a cui ho preso parte, descritto all’interno dell’elaborato, ha come scopo quello di sostenere l’organizzazione nel suo piano di improvement delle prestazioni interne e ha permesso di verificare l’applicabilità e i limiti delle tecniche di process mining. Infine, nell’appendice finale, è presente un paper da me realizzato, che raccoglie tutte le applicazioni della disciplina in un contesto di business reale, traendo dati e informazioni da working papers, casi aziendali e da canali diretti. Per la sua validità e completezza, questo documento è stata pubblicato nel sito dell'IEEE Task Force on Process Mining.
Resumo:
Ontology design and population -core aspects of semantic technologies- re- cently have become fields of great interest due to the increasing need of domain-specific knowledge bases that can boost the use of Semantic Web. For building such knowledge resources, the state of the art tools for ontology design require a lot of human work. Producing meaningful schemas and populating them with domain-specific data is in fact a very difficult and time-consuming task. Even more if the task consists in modelling knowledge at a web scale. The primary aim of this work is to investigate a novel and flexible method- ology for automatically learning ontology from textual data, lightening the human workload required for conceptualizing domain-specific knowledge and populating an extracted schema with real data, speeding up the whole ontology production process. Here computational linguistics plays a fundamental role, from automati- cally identifying facts from natural language and extracting frame of relations among recognized entities, to producing linked data with which extending existing knowledge bases or creating new ones. In the state of the art, automatic ontology learning systems are mainly based on plain-pipelined linguistics classifiers performing tasks such as Named Entity recognition, Entity resolution, Taxonomy and Relation extraction [11]. These approaches present some weaknesses, specially in capturing struc- tures through which the meaning of complex concepts is expressed [24]. Humans, in fact, tend to organize knowledge in well-defined patterns, which include participant entities and meaningful relations linking entities with each other. In literature, these structures have been called Semantic Frames by Fill- 6 Introduction more [20], or more recently as Knowledge Patterns [23]. Some NLP studies has recently shown the possibility of performing more accurate deep parsing with the ability of logically understanding the structure of discourse [7]. In this work, some of these technologies have been investigated and em- ployed to produce accurate ontology schemas. The long-term goal is to collect large amounts of semantically structured information from the web of crowds, through an automated process, in order to identify and investigate the cognitive patterns used by human to organize their knowledge.
Resumo:
Over the past twenty years, new technologies have required an increasing use of mathematical models in order to understand better the structural behavior: finite element method is the one mostly used. However, the reliability of this method applied to different situations has to be tried each time. Since it is not possible to completely model the reality, different hypothesis must be done: these are the main problems of FE modeling. The following work deals with this problem and tries to figure out a way to identify some of the unknown main parameters of a structure. This main research focuses on a particular path of study and development, but the same concepts can be applied to other objects of research. The main purpose of this work is the identification of unknown boundary conditions of a bridge pier using the data acquired experimentally with field tests and a FEM modal updating process. This work doesn’t want to be new, neither innovative. A lot of work has been done during the past years on this main problem and many solutions have been shown and published. This thesis just want to rework some of the main aspects of the structural optimization process, using a real structure as fitting model.