153 resultados para poliedri formula di Eulero teorema di rigidità di Cauchy
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Questa tesi riguarda la formula di Eulero per i poliedri: F - S + V = 2 dove F indica il numero di facce, S il numero di spigoli e V quello dei vertici di un poliedro. Nel primo capitolo tratteremo i risultati ottenuti da Cartesio: egli fu il primo a considerare non solo le caratteristiche geometriche ma anche metriche di un solido. Partendo dall'analogia con le figure piane, riuscì a ricavare importanti relazioni nei solidi convessi, riguardanti il numero e la misura degli angoli piani, degli angoli solidi e delle facce. Non arrivò mai alla formulazione conosciuta oggi ma ne intuì le caratteristiche topologiche, che però non dimostrò mai. Nel secondo capitolo invece ci occuperemo di ciò che scoprì Eulero. Il manoscritto contenente i risultati di Cartesio era scomparso e quindi questi non erano più conosciuti dai matematici; Eulero, in accordo con quanto avviene per i poligoni, desiderava ottenere un metodo di classificazione per i poliedri e si mise a studiare le loro proprietà. Oltre alla sua formula, in un primo articolo ricavò importanti relazioni, e in un secondo lavoro ne propose una dimostrazione. Riportiamo in breve anche un confronto tra il lavoro di Cartesio e quello di Eulero. Il terzo capitolo invece riguarda il metodo e il rigore nella formulazione di teoremi e dimostrazioni: I. Lakatos ne fa un esame critico nel libro "Dimostrazioni e Confutazioni - la logica della scoperta matematica", simulando una lezione dove a tema compaiono la Formula di Eulero e le sue dimostrazioni. Noi cercheremo di analizzare questo suo lavoro. Su questi tre autori e i loro lavori riportiamo alcune considerazioni biografiche e storiche che possono offrire interessanti spunti didattici: infatti nel quarto e ultimo capitolo ci occuperemo di alcune considerazioni didattiche a proposito della Formula. La struttura sarà quella di un'ipotetica lezione a studenti di Scuola Media Inferiore e utilizzeremo i risultati ottenuti nei precedenti capitoli e una personale esperienza di tirocinio.
Resumo:
La tesi tratta della formula di Eulero per i poliedri e del teorema di rigidità di Cauchy. La tesi è conclusa da brevi considerazioni didattiche su di essi
Resumo:
Oggetto della mia tesi è la trasformata di Fourier e la sua applicazione alla risoluzione dell'equazione del calore e dell'equazione delle onde. Nel primo capitolo ricordo la definizione di trasformata di Fourier, alcune sue proprietà e infine la definizione di Spazi di Schwartz. Nel secondo capitolo risolverò l'equazione del calore e nel terzo l'equazione delle onde.
Resumo:
In questa tesi vengono forniti risultati sulle serie di Fourier e successivamente sulle serie di Fejér, utili per poter analizzare il cosiddetto problema di Cauchy-Dirichlet per l'equazione del calore di una sbarra omogenea. Lo scopo è trovare soluzioni classiche del problema che presenta come dato iniziale dapprima una funzione di classe C^1 e successivamente una funzione solamente continua.
Resumo:
Scopo della tesi è studiare un modello di percezione cromatica, che descrive la propagazione dell'attività mediante un problema di Cauchy in spazi di Banach. Presentiamo dapprima il problema della stabilità delle soluzioni al problema di Cauchy tramite il metodo Lyapunov; prima in dimensione finita, e poi in spazi di Banach. Poi verifichiamo che l'equazione fondamentale di percezione cromatica ricade nel setting considerato e che il funzionale di Lyapunov associato verifica le ipotesi che assicurano la stabilità.
Resumo:
In quest'elaborato si risolve il problema di Cauchy-Dirichlet per l'equazione del calore, prendendo come oggetto d'esame una sbarra omogenea. Nel primo capitolo si studiano le serie di Fourier reali a partire dalle serie trigonometriche; vengono dati, poi, i principali risultati di convergenza puntuale, uniforme ed in L^2 e si discute l'integrabilità termine a termine di una serie di Fourier. Il secondo capitolo tratta la convergenza secondo Cesàro, le serie di Fejèr ed i principali risultati di convergenza di queste ultime. Nel terzo, ed ultimo, capitolo si risolve il Problema di Cauchy-Dirichlet, distinguendo i casi in cui il dato iniziale sia di classe C^1 o solo continuo; nel secondo caso si propone una risoluzione basata sulle serie di Fejér e sul concetto di barriera ed una utilizzando il nucleo di Green per l'equazione del calore.
Resumo:
In questa tesi si dimostra il teorema di inversione di Lévy, risultato che permette di ricostruire, a partire dalla funzione caratteristica di una variabile aleatoria assolutamente continua, la sua densità. Come conseguenza si dimostra che la funzione caratteristica di una variabile aleatoria ne caratterizza univocamente la distribuzione. Viene inoltre presentata una applicazione della formula di inversione per la valutazione di opzioni in finanza con esempi numerici basati sul modello Merton.
Resumo:
Scopo della tesi è di estendere un celebre teorema di Montel, sulle famiglie normali di funzioni olomorfe, all'ambiente sub-ellittico delle famiglie di soluzioni u dell'equazione Lu=0, dove L appartiene ad un'ampia classe di operatori differenziali alle derivate parziali reali del secondo ordine in forma di divergenza, comprendente i sub-Laplaciani sui gruppi di Carnot, i Laplaciani sub-ellittici su arbitrari gruppi di Lie, oltre all'operatore di Laplace-Beltrami su varietà di Riemann. A questo scopo, forniremo una versione sub-ellittica di un altro notevole risultato, dovuto a Koebe, che caratterizza le funzioni armoniche come punti fissi di opportuni operatori integrali di media con nuclei non banali. Sarà fornito anche un adeguato sostituto della formula integrale di Cauchy.
Resumo:
In questo lavoro studiamo le funzioni armoniche e le loro proprietà: le formule di media, il principio del massimo e del minimo (forte e debole), la disuguaglianza di Harnack e il teorema di Louiville. Successivamente scriviamo la prima e la seconda identità di Green, che permettono di ottenere esplicitamente la soluzione fondamentale dell’equazione di Laplace, tramite il calcolo delle soluzioni radiali del Laplaciano. Introduciamo poi la funzione di Green, da cui si ottiene una formula di rappresentazione per le funzioni armoniche. Se il dominio di riferimento è una palla, la funzione di Green può essere determinata esplicitamente, e ciò conduce alla rappresentazione integrale di Poisson per le funzioni armoniche in una palla.
Resumo:
Gli spazi di Teichmuller nacquero come risposta ad un problema posto diversi anni prima da Bernhard Riemann, che si domandò in che modo poter parametrizzare le strutture complesse supportate da una superficie fissata; in questo lavoro di tesi ci proponiamo di studiarli in maniera approfondita. Una superficie connessa, orientata e dotata di struttura complessa, prende il nome di superficie di Riemann e costituisce l’oggetto principe su cui si basa l’intero studio affrontato nelle pagine a seguire. Il teorema di uniformizzazione per le superfici di Riemann permette di fare prima distinzione netta tra esse, classificandole in superfici ellittiche, piatte o iperboliche. Due superfici di Riemann R ed S si dicono equivalenti se esiste un biolomorfismo f da R in S, e si dice che hanno la stessa struttura complessa. Certamente se le due superfici hanno genere diverso non possono essere equivalenti. Tuttavia, se R ed S sono superfci con lo stesso genere g ma non equivalenti, è comunque possibile dotare R di una struttura complessa, diversa dalla precedente, che la renda equivalente ad S. Questo permette di osservare che R è in grado di supportare diverse strutture complesse non equivalenti tra loro. Lo spazio di Teichmuller Tg di R è definito come lo spazio che parametrizza tutte le strutture complesse su R a meno di biolomorfismo. D’altra parte ogni superficie connessa, compatta e orientata di genere maggiore o uguale a 2 è in grado di supportare una struttura iperbolica. Il collegamento tra il mondo delle superfici di Riemann con quello delle superfici iperboliche è stato dato da Gauss, il quale provò che per ogni fissata superficie R le metriche iperboliche sono in corrispondenza biunivoca con le strutture complesse supportate da R stessa. Questo teorema permette di fornire una versione della definizione di Tg per superfici iperboliche; precisamente due metriche h1, h2 su R sono equivalenti se e soltanto se esiste un’isometria φ : (R, h1 ) −→ (R, h2 ) isotopa all’identità. Pertanto, grazie al risultato di Gauss, gli spazi di Teichmuller possono essere studiati sia dal punto di vista complesso, che da quello iperbolico.
Resumo:
L’obiettivo di questa tesi è quello di presentare, in maniera elementare ma esaustiva, una delle teorie più interessanti nell’ambito dell’analisi matematica: le equazioni differenziali, equazioni che legano una funzione (vista come incognita) alle sue derivate. Nel presentare la teoria delle equazioni differenziali, l’esposizione viene suddivisa in tre capitoli. Il primo ha il fine di presentare la teoria, introducendo le definizioni e i principali risultati, con particolare attenzione al problema di Cauchy, mentre nel secondo l’attenzione si focalizza su come le soluzioni di un sistema differenziale dipendano dai dati iniziali. Nel terzo capitolo la teoria viene generalizzata attraverso il Teorema di Frobenius. Infatti, così come la soluzione di un’equazione differenziale ordinaria permette di ricostruire una curva passante per un dato punto a partire dal suo campo di tangenti, analogamente il Teorema di Frobenius permette di ricostruire una sottovarietà liscia a partire da un sistema di spazi vettoriali tangenti.
Resumo:
Questa tesi nasce dal voler approfondire lo studio delle curve piane di grado 3 iniziato nel corso di Geometria Proiettiva. In particolare si andrà a studiare la legge di gruppo che si può definire su tali curve e i punti razionali di ordine finito appartenenti alle curve ellittiche. Nel primo capitolo si parla di equazioni diofantee, dell’Ultimo Teorema di Fermat, dell'equazione e della formula di duplicazione di Bachet. Si parla inoltre dello stretto rapporto tra la geometria, l'algebra e la teoria dei numeri nella teoria delle curve ellittiche e come le curve ellittiche siano importanti nella crittografia. Nel secondo capitolo vengono enunciate alcune definizioni, proposizioni e teoremi, riguardanti polinomi e curve ellittiche. Nel terzo capitolo viene introdotta la forma normale di una cubica. Nel quarto capitolo viene descritta la legge di gruppo su una cubica piana non singolare e la costruzione geometrica che porta ad essa; si vede il caso particolare della legge di gruppo per una cubica razionale in forma normale ed inoltre si ricavano le formule esplicite per la somma di due punti appartenenti ad una cubica. Nel capitolo cinque si iniziano a studiare i punti di ordine finito per una curva ellittica con la legge di gruppo dove l'origine è un flesso: vengono descritti e studiati i punti di ordine 2 e quelli di ordine 3. Infine, nel sesto capitolo si studiano i punti razionali di ordine finito qualsiasi: viene introdotto il concetto di discriminante di una cubica e successivamente viene enunciato e dimostrato il teorema di Nagell-Lutz.
Resumo:
Nel 1837 il matematico A.F. Möbius definì la funzione aritmetica mu(n) che vale 0 se n è divisibile per il quadrato di un numero primo, (-1)^k se n è il prodotto di k primi distinti e \mu(1)=1. Essa ricopre un ruolo di fondamentale importanza per quanto riguarda la distribuzione dei numeri primi, nonché per la sua duttilità nella risoluzione di diversi problemi di conteggio grazie alla formula di inversione di Möbius, che può essere pensata come un analogo formale del teorema fondamentale del calcolo integrale. Una sorprendente varietà di problemi di calcolo combinatorio si rivelano essere nient'altro che casi particolari di un problema più generale che riguarda la possibilità di invertire una somma fatta sugli elementi di un insieme parzialmente ordinato. L'obiettivo di questo elaborato è quello di illustrare come sia possibile generalizzare il concetto di funzione aritmetica estendendolo a quello di funzione di un'algebra di incidenza. Le algebre di incidenza hanno catturato l'interesse di svariati matematici a partire dagli anni '60 del secolo scorso, e si svilupparono come ambiente naturale nel quale generalizzare la formula di inversione di Mobius. La funzione di Möbius della teoria dei numeri, definita originariamente sull'insieme dei numeri interi positivi ordinato per divisibilità, può quindi essere definita su generici insiemi parzialmente ordinati.