2 resultados para pn junction diodes

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this thesis is the application of an opto-electronic numerical simulation to heterojunction silicon solar cells featuring an all back contact architecture (Interdigitated Back Contact Hetero-Junction IBC-HJ). The studied structure exhibits both metal contacts, emitter and base, at the back surface of the cell with the objective to reduce the optical losses due to the shadowing by front contact of conventional photovoltaic devices. Overall, IBC-HJ are promising low-cost alternatives to monocrystalline wafer-based solar cells featuring front and back contact schemes, in fact, for IBC-HJ the high concentration doping diffusions are replaced by low-temperature deposition processes of thin amorphous silicon layers. Furthermore, another advantage of IBC solar cells with reference to conventional architectures is the possibility to enable a low-cost assembling of photovoltaic modules, being all contacts on the same side. A preliminary extensive literature survey has been helpful to highlight the specific critical aspects of IBC-HJ solar cells as well as the state-of-the-art of their modeling, processing and performance of practical devices. In order to perform the analysis of IBC-HJ devices, a two-dimensional (2-D) numerical simulation flow has been set up. A commercial device simulator based on finite-difference method to solve numerically the whole set of equations governing the electrical transport in semiconductor materials (Sentuarus Device by Synopsys) has been adopted. The first activity carried out during this work has been the definition of a 2-D geometry corresponding to the simulation domain and the specification of the electrical and optical properties of materials. In order to calculate the main figures of merit of the investigated solar cells, the spatially resolved photon absorption rate map has been calculated by means of an optical simulator. Optical simulations have been performed by using two different methods depending upon the geometrical features of the front interface of the solar cell: the transfer matrix method (TMM) and the raytracing (RT). The first method allows to model light prop-agation by plane waves within one-dimensional spatial domains under the assumption of devices exhibiting stacks of parallel layers with planar interfaces. In addition, TMM is suitable for the simulation of thin multi-layer anti reflection coating layers for the reduction of the amount of reflected light at the front interface. Raytracing is required for three-dimensional optical simulations of upright pyramidal textured surfaces which are widely adopted to significantly reduce the reflection at the front surface. The optical generation profiles are interpolated onto the electrical grid adopted by the device simulator which solves the carriers transport equations coupled with Poisson and continuity equations in a self-consistent way. The main figures of merit are calculated by means of a postprocessing of the output data from device simulation. After the validation of the simulation methodology by means of comparison of the simulation result with literature data, the ultimate efficiency of the IBC-HJ architecture has been calculated. By accounting for all optical losses, IBC-HJ solar cells result in a theoretical maximum efficiency above 23.5% (without texturing at front interface) higher than that of both standard homojunction crystalline silicon (Homogeneous Emitter HE) and front contact heterojuction (Heterojunction with Intrinsic Thin layer HIT) solar cells. However it is clear that the criticalities of this structure are mainly due to the defects density and to the poor carriers transport mobility in the amorphous silicon layers. Lastly, the influence of the most critical geometrical and physical parameters on the main figures of merit have been investigated by applying the numerical simulation tool set-up during the first part of the present thesis. Simulations have highlighted that carrier mobility and defects level in amorphous silicon may lead to a potentially significant reduction of the conversion efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nel presente lavoro di tesi magistrale sono stati depositati e caratterizzati film sottili (circa 10 nm) di silicio amorfo idrogenato (a-Si:H), studiando in particolare leghe a basso contenuto di ossigeno e carbonio. Tali layer andranno ad essere implementati come strati di passivazione per wafer di Si monocristallino in celle solari ad eterogiunzione HIT (heterojunctions with intrinsic thin layer), con le quali recentemente è stato raggiunto il record di efficienza pari a 24.7% . La deposizione è avvenuta mediante PECVD (plasma enhanced chemical vapour deposition). Tecniche di spettroscopia ottica, come FT-IR (Fourier transform infrared spectroscopy) e SE (spettroscopic ellipsometry) sono state utilizzate per analizzare le configurazioni di legami eteronucleari (Si-H, Si-O, Si-C) e le proprietà strutturali dei film sottili: un nuovo metodo è stato implementato per calcolare i contenuti atomici di H, O e C da misure ottiche. In tal modo è stato possibile osservare come una bassa incorporazione (< 10%) di ossigeno e carbonio sia sufficiente ad aumentare la porosità ed il grado di disordine a lungo raggio del materiale: relativamente a quest’ultimo aspetto, è stata sviluppata una nuova tecnica per determinare dagli spettri ellisometrici l’energia di Urbach, che esprime la coda esponenziale interna al gap in semiconduttori amorfi e fornisce una stima degli stati elettronici in presenza di disordine reticolare. Nella seconda parte della tesi sono stati sviluppati esperimenti di annealing isocrono, in modo da studiare i processi di cristallizzazione e di effusione dell’idrogeno, correlandoli con la degradazione delle proprietà optoelettroniche. L’analisi dei differenti risultati ottenuti studiando queste particolari leghe (a-SiOx e a-SiCy) ha permesso di concludere che solo con una bassa percentuale di ossigeno o carbonio, i.e. < 3.5 %, è possibile migliorare la risposta termica dello specifico layer, ritardando i fenomeni di degradazione di circa 50°C.