4 resultados para plasma dispersion effect
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In this thesis effects of plasma actuators based on Dielectric Barrier Discharge (DBD) technology over a NACA 0015 bidimensional airfoil have been analyzed in an experimental way, at low Reynolds number. Work developed on thesis has been carried on in partnership with the Department of Electrical Engineering of Università di Bologna, inside Wind Tunnel of the Applied Aerodynamic Laboratory of Aerospace Engineering faculty. In order to verify the effectiveness of these active control devices, the analysis has shown how actuators succeed in prevent boundary layer separation only in certain conditions af angle of attack and Reynolds numbers. Moreover, in this thesis actuators’ chordwise position effect has been also analyzed, together with the influence of steady and unsteady operations.
Resumo:
Laser Shock Peening (LSP) is a technological process used to improve mechanical properties in metallic components. When a short and intense laser pulse irradiates a metallic surface, high pressure plasma is generated on the treated surface; elasto-plastic waves, then, propagate inside the target and create plastic strain. This surface treatment induces a deep compressive residual stresses field on the treated area and through the thickness; such compressive residual stress is expected to increase the fatigue resistance, and reduce the detrimental effects of corrosion and stress corrosion cracking.
Resumo:
Metal nanowires (NWs) - nanostructures 20-100 nm in diameter and up to tens of micrometers long - behave as waveguides when irradiated with light with wavelength much greater than their diameter. This is due to collective excitations of free electrons (plasmons) in the metal which couple to light and travel on the surface of the nanowire. This effect can be used to efficiently absorb laser pulses to produce dense and hot plasma on special nanostructured targets with metal nanowires vertically aligned on the surface. In this thesis work, nanostructured targets with different parameters (length, diameter, metal and fabrication process) have been irradiated with infrared laser light. X-ray flux emitted by the cooling plasma is measured during irradiation, and the depth of craters formed on the target is measured later. This data is used to choose which target parameters are best for plasma production. Different targets are compared with each other and against a control, non-nanostructured (bulk) target. As will be shown, highly significant (> 5 sigma) differences are found between targets with different nanostructures, and between nanostructured and bulk target. This differences are very difficult to explain whithout accounting for the nanostructures in the targets. Therefore, data collected and analized in this thesis work supports the hypotesys that nanostructured targets perform better than bulk targets for laser plasma production purposes, and provides useful indications for optimization of NWS' parameters.
Resumo:
The aim of this work is to analyse the chemistry models of low pressure Helicon discharges fed with iodine and air. In particular the focus of this research is to understand the plasma dynamics in order to predict propulsive performances of iodine and air-breathing Helicon Plasma Thrusters. The two systems have been simulated and analysed with the use of global models, i.e. a 0 dimensional tool to solve the set of governing equations by assuming that all quantities are volume averaged. Furthermore, some strategies have been implemented to improve the accuracy of this approach. A verification have been accomplished on the global models for both iodine and air, comparing results against simulations taken from literature. Moreover, the iodine global model has been validated against the experimental measurements of REGULUS, an helicon plasma thruster developed by the Italian company T4i, with a good agreement. From the analysis of iodine model, it has been found a significantly higher density for atomic positive ions with respect to molecular ions. Negative ions, instead, have shown to have negligible effect on the propulsive results. Also, the influence of reactions between heavy particles has been analysed with the global model. Results have demonstrated that, in the iodine case, chemistry is almost entirely affected by electronic collisions. For what concerns air-breathing results, it has been investigated the effects of the orbital height on propulsive performances. In particular, the global model has shown that at lower height, the values of thrust and specific impulse are lower due a change in atmosphere concentration. Finally, the iodine chemistry model has been introduced in the fluid code 3D-VIRTUS in order to preliminary assess the plasma properties of a Helicon discharge chamber for electric propulsion.