3 resultados para plant optimization
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Il progetto di tesi è incentrato sull’ottimizzazione del procedimento di taratura dei regolatori lineari degli anelli di controllo di posizione e velocità presenti negli azionamenti usati industrialmente su macchine automatiche, specialmente quando il carico è ad inerzia variabile in dipendenza dalla posizione, dunque non lineare, come ad esempio un quadrilatero articolato. Il lavoro è stato svolto in collaborazione con l’azienda G.D S.p.A. ed il meccanismo di prova è realmente utilizzato nelle macchine automatiche per il packaging di sigarette. L’ottimizzazione si basa sulla simulazione in ambiente Matlab/Simulink dell’intero sistema di controllo, cioè comprensivo del modello Simulink degli anelli di controllo del drive, inclusa la dinamica elettrica del motore, e del modello Simscape del meccanismo, perciò una prima necessaria fase del lavoro è stata la validazione di tali modelli affinché fossero sufficientemente fedeli al comportamento reale. Il secondo passo è stato fornire una prima taratura di tentativo che fungesse da punto di partenza per l’algoritmo di ottimizzazione, abbiamo fatto ciò linearizzando il modello meccanico con l’inerzia minima e utilizzando il metodo delle formule di inversione per determinare i parametri di controllo. Già questa taratura, seppur conservativa, ha portato ad un miglioramento delle performance del sistema rispetto alla taratura empirica comunemente fatta in ambito industriale. Infine, abbiamo lanciato l’algoritmo di ottimizzazione definendo opportunamente la funzione di costo, ed il risultato è stato decisamente positivo, portando ad un miglioramento medio del massimo errore di inseguimento di circa il 25%, ma anche oltre il 30% in alcuni casi.
Resumo:
The rate at which petroleum based plastics are being produced, used and thrown away is increasing every year because of an increase in the global population. Polyhydroxyalkanoates can represent a valid alternative to petroleum based plastics. They are biodegradable polymers that can be produced by some microorganisms as intracellular reserves. The actual problem is represented by the production cost of these bioplastics, which is still not competitive if compared to the one of petroleum based plastics. Mixed microbial cultures can be fed with substrates obtained from the acidogenic fermentation of carbon rich wastes, such as cheese whey, municipal effluents and various kinds of food wastes, that have a low or sometimes even inexisting cost and in this way wastes can be valorized instead of being discharged. The process consists of three phases: acidogenic fermentation in which the substrate is obtained, culture selection in which a PHA-storing culture is selected and enriched eliminating organisms that do not show this property and accumulation, in which the culture is fed until reaching the maximum storage capacity. In this work the possibility to make the process cheaper was explored trying to couple the selection and accumulation steps and a halotolerant culture collected from seawater was used and fed with an artificially salted synthetic substrated made of an aqueous solution containing a mixture of volatile fatty acids in order to explore also if its performance can allow to use it to treat substrates derived from saline effluents, as these streams cannot be treated properly by bacterias found in activated sludge plants due to inhibition caused by high salt concentrations. Generating and selling the produced PHAs obtained from these bacterias it could be possible to lower, nullify or even overcome the costs associated to the new section of a treating plant dedicated to saline effluents.
Resumo:
In the metal industry, and more specifically in the forging one, scrap material is a crucial issue and reducing it would be an important goal to reach. Not only would this help the companies to be more environmentally friendly and more sustainable, but it also would reduce the use of energy and lower costs. At the same time, the techniques for Industry 4.0 and the advancements in Artificial Intelligence (AI), especially in the field of Deep Reinforcement Learning (DRL), may have an important role in helping to achieve this objective. This document presents the thesis work, a contribution to the SmartForge project, that was performed during a semester abroad at Karlstad University (Sweden). This project aims at solving the aforementioned problem with a business case of the company Bharat Forge Kilsta, located in Karlskoga (Sweden). The thesis work includes the design and later development of an event-driven architecture with microservices, to support the processing of data coming from sensors set up in the company's industrial plant, and eventually the implementation of an algorithm with DRL techniques to control the electrical power to use in it.