3 resultados para pharmacologically active compounds
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In recent years, the asymmetric organocatalysis has been recognized as an independent area of synthetic chemistry, where the goal is the preparation of any chiral molecule in an efficient, rapid, and stereoselective manner. In this context we have synthesized macromolecular catalysts soluble in the reaction conditions and that can finally recovered by simple precipitation and subsequent filtration. In particular different active compounds (9-epi-NH2 hyidroquinine and β –isocupreidine) have been linked to the terminal group of the main chain polyethylene glycol monomethyl ether (PEG-5000). The macromolecular catalysts have been tested in different reactions and the results have been compared with those of the correspondent low molecular compounds.
Resumo:
The importance of the β-amino nitroalkanes is due to their high versatility allowing a straightforward entry to a variety of nitrogen-containing chiral building blocks; furthermore obtaining them in enantiopure form allows their use in the synthesis of biologically active compounds or their utilization as chiral ligands for different uses. In this work, a reaction for obtaining enantiopure β-amino nitroalkanes through asymmetric organocatalysis has been developed. The synthetic strategy adopted for the obtainment of these compounds was based on an asymmetric reduction of β-amino nitroolefins in a transfer hydrogenation reaction, involving an Hantzsch ester as hydrogen source and a chiral thiourea as organic catalyst. After the optimization of the reaction conditions over the β-acyl-amino nitrostyrene, we tested the reaction generality over other aromatic compound and for Boc protected substrate both aromatic and aliphatic. A scale-up of the reaction was also performed.
Resumo:
The development of procedures for the iridium catalyzed C-H borylation of 1-aryl pyrazolopyrimidines and 1-aryl indazoles is reported. Investigation on the activity of the catalyst revealed the combination of an iridium (I) precursor and tetramethylphenantroline as the best catalytic system. Moreover, the procedures are regioselective resulting in the selective borylation of different C-H bonds within the substrates. The application of C-H borylation to late stage functionalization is demonstrated: a biologically active compound in AstraZeneca's project underwent tandem borylation/oxidation reaction, in order to obtain a functionalized product containing an OH group.