2 resultados para peptidi, autoassemblanti
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
L’argomento trattato in questo elaborato riguarda la natura e le applicazioni di una nuova classe di biomateriali: i peptidi auto-assemblanti. La perdita di funzione di un organo o di un tessuto rappresenta una problematica rilevante sia sotto il profilo clinico sia per i costi di gestione. I trapianti sono infatti tra le terapie più sofisticate e onerose economicamente, complicate da altri aspetti quali una strutturale insufficienza di donatori e la necessità che i soggetti trapiantati vengano sottoposti cronicamente a regimi terapeutici immunosoppressivi che aumentano eventuali effetti collaterali. La terapia sostitutiva basata su organi artificiali è invece gravata dalla durata limitata dei dispositivi, nonchè da un non trascurabile rischio infettivo. La medicina rigenerativa, che sembra essere una soluzione adeguata per ovviare a tutte queste problematiche, è un settore emergente che combina aspetti della medicina, della biologia cellulare e molecolare, della scienza dei materiali e dell’ingegneria al fine di rigenerare, riparare o sostituire i tessuti danneggiati. In questo panorama, il ruolo dei biomateriali sta diventando sempre più importante grazie alla loro varietà e alle loro funzioni emergenti. Tra i biomateriali innovativi più promettenti troviamo i peptidi auto-assemblanti. Dopo un'introduzione sui principi dell'ingegneria tissutale, la tesi si focalizza sui peptidi auto-assemblanti e sulle loro applicazioni in campo biomedico, ponendo l'attenzione, in particolar modo, sulla realizzazione di scaffold per la rigenerazione del tessuto osseo, cardiaco, cartilagineo e nervoso, e sulla loro applicazione per il rilascio controllato di farmaci.
Resumo:
I lantibiotici sono molecole peptidiche prodotte da un gran numero di batteri Gram-positivi, posseggono attività antibatterica contro un ampio spettro di germi, e rappresentano una potenziale soluzione alla crescente problematica dei patogeni multi-resistenti. La loro attività consiste nel legame alla membrana del bersaglio, che viene quindi destabilizzata mediante l’induzione di pori che determinano la morte del patogeno. Tipicamente i lantibiotici sono formati da un “leader-peptide” e da un “core-peptide”. Il primo è necessario per il riconoscimento della molecola da parte di enzimi che effettuano modifiche post-traduzionali del secondo - che sarà la regione con attività battericida una volta scissa dal “leader-peptide”. Le modifiche post-traduzionali anticipate determinano il contenuto di amminoacidi lantionina (Lan) e metil-lantionina (MeLan), caratterizzati dalla presenza di ponti-tioetere che conferiscono maggior resistenza contro le proteasi, e permettono di aggirare la principale limitazione all’uso dei peptidi in ambito terapeutico. La nisina è il lantibiotico più studiato e caratterizzato, prodotto dal batterio L. lactis che è stato utilizzato per oltre venti anni nell’industria alimentare. La nisina è un peptide lungo 34 amminoacidi, che contiene anelli di lantionina e metil-lantionina, introdotti dall’azione degli enzimi nisB e nisC, mentre il taglio del “leader-peptide” è svolto dall’enzima nisP. Questo elaborato affronta l’ingegnerizzazione della sintesi e della modifica di lantibiotici nel batterio E.coli. In particolare si affronta l’implementazione dell’espressione eterologa in E.coli del lantibiotico cinnamicina, prodotto in natura dal batterio Streptomyces cinnamoneus. Questo particolare lantibiotico, lungo diciannove amminoacidi dopo il taglio del leader, subisce modifiche da parte dell’enzima CinM, responsabile dell’introduzione degli aminoacidi Lan e MeLan, dell’enzima CinX responsabile dell’idrossilazione dell’acido aspartico (Asp), e infine dell’enzima cinorf7 deputato all’introduzione del ponte di lisinoalanina (Lal). Una volta confermata l’attività della cinnamicina e di conseguenza quella dell’enzima CinM, si è deciso di tentare la modifica della nisina da parte di CinM. A tal proposito è stato necessario progettare un gene sintetico che codifica nisina con un leader chimerico, formato cioè dalla fusione del leader della cinnamicina e del leader della nisina. Il prodotto finale, dopo il taglio del leader da parte di nisP, è una nisina completamente modificata. Questo risultato ne permette però la modifica utilizzando un solo enzima invece di due, riducendo il carico metabolico sul batterio che la produce, e inoltre apre la strada all’utilizzo di CinM per la modifica di altri lantibiotici seguendo lo stesso approccio, nonché all’introduzione del ponte di lisinoalanina, in quanto l’enzima cinorf7 necessita della presenza di CinM per svolgere la sua funzione.