2 resultados para penalty-based aggregation functions
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Il lavoro presentato in questa Tesi si basa sul calcolo di modelli dinamici per Galassie Sferoidali Nane studiando il problema mediante l'utilizzo di funzioni di distribuzione. Si è trattato un tipo di funzioni di distribuzione, "Action-Based distribution functions", le quali sono funzioni delle sole variabili azione. Fornax è stata descritta con un'appropriata funzione di distribuzione e il problema della costruzione di modelli dinamici è stato affrontato assumendo sia un alone di materia oscura con distribuzione di densità costante nelle regioni interne sia un alone con cuspide. Per semplicità è stata assunta simmetria sferica e non è stato calcolato esplicitamente il potenziale gravitazionale della componente stellare (le stelle sono traccianti in un potenziale gravitazionale fissato). Tramite un diretto confronto con alcune osservabili, quali il profilo di densità stellare proiettata e il profilo di dispersione di velocità lungo la linea di vista, sono stati trovati alcuni modelli rappresentativi della dinamica di Fornax. Modelli calcolati tramite funzioni di distribuzione basati su azioni permettono di determinare in maniera autoconsistente profili di anisotropia. Tutti i modelli calcolati sono caratterizzati dal possedere un profilo di anisotropia con forte anisotropia tangenziale. Sono state poi comparate le stime di materia oscura di questi modelli con i più comuni e usati stimatori di massa in letteratura. E stato inoltre stimato il rapporto tra la massa totale del sistema (componente stellare e materia oscura) e la componente stellare di Fornax, entro 1600 pc ed entro i 3 kpc. Come esplorazione preliminare, in questo lavoro abbiamo anche presentato anche alcuni esempi di modelli sferici a due componenti in cui il campo gravitazionale è determinato dall'autogravità delle stelle e da un potenziale esterno che rappresenta l'alone di materia oscura.
Resumo:
Structural Health Monitoring (SHM) is an emerging area of research associated to improvement of maintainability and the safety of aerospace, civil and mechanical infrastructures by means of monitoring and damage detection. Guided wave structural testing method is an approach for health monitoring of plate-like structures using smart material piezoelectric transducers. Among many kinds of transducers, the ones that have beam steering feature can perform more accurate surface interrogation. A frequency steerable acoustic transducer (FSATs) is capable of beam steering by varying the input frequency and consequently can detect and localize damage in structures. Guided wave inspection is typically performed through phased arrays which feature a large number of piezoelectric transducers, complexity and limitations. To overcome the weight penalty, the complex circuity and maintenance concern associated with wiring a large number of transducers, new FSATs are proposed that present inherent directional capabilities when generating and sensing elastic waves. The first generation of Spiral FSAT has two main limitations. First, waves are excited or sensed in one direction and in the opposite one (180 ̊ ambiguity) and second, just a relatively rude approximation of the desired directivity has been attained. Second generation of Spiral FSAT is proposed to overcome the first generation limitations. The importance of simulation tools becomes higher when a new idea is proposed and starts to be developed. The shaped transducer concept, especially the second generation of spiral FSAT is a novel idea in guided waves based of Structural Health Monitoring systems, hence finding a simulation tool is a necessity to develop various design aspects of this innovative transducer. In this work, the numerical simulation of the 1st and 2nd generations of Spiral FSAT has been conducted to prove the directional capability of excited guided waves through a plate-like structure.