4 resultados para path-integral bosonization

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this thesis we study the heat kernel, a useful tool to analyze various properties of different quantum field theories. In particular, we focus on the study of the one-loop effective action and the application of worldline path integrals to derive perturbatively the heat kernel coefficients for the Proca theory of massive vector fields. It turns out that the worldline path integral method encounters some difficulties if the differential operator of the heat kernel is of non-minimal kind. More precisely, a direct recasting of the differential operator in terms of worldline path integrals, produces in the classical action a non-perturbative vertex and the path integral cannot be solved. In this work we wish to find ways to circumvent this issue and to give a suggestion to solve similar problems in other contexts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In questa tesi abbiamo studiato la quantizzazione di una teoria di gauge di forme differenziali su spazi complessi dotati di una metrica di Kaehler. La particolarità di queste teorie risiede nel fatto che esse presentano invarianze di gauge riducibili, in altre parole non indipendenti tra loro. L'invarianza sotto trasformazioni di gauge rappresenta uno dei pilastri della moderna comprensione del mondo fisico. La caratteristica principale di tali teorie è che non tutte le variabili sono effettivamente presenti nella dinamica e alcune risultano essere ausiliarie. Il motivo per cui si preferisce adottare questo punto di vista è spesso il fatto che tali teorie risultano essere manifestamente covarianti sotto importanti gruppi di simmetria come il gruppo di Lorentz. Uno dei metodi più usati nella quantizzazione delle teorie di campo con simmetrie di gauge, richiede l'introduzione di campi non fisici detti ghosts e di una simmetria globale e fermionica che sostituisce l'iniziale invarianza locale di gauge, la simmetria BRST. Nella presente tesi abbiamo scelto di utilizzare uno dei più moderni formalismi per il trattamento delle teorie di gauge: il formalismo BRST Lagrangiano di Batalin-Vilkovisky. Questo metodo prevede l'introduzione di ghosts per ogni grado di riducibilità delle trasformazioni di gauge e di opportuni “antifields" associati a ogni campo precedentemente introdotto. Questo formalismo ci ha permesso di arrivare direttamente a una completa formulazione in termini di path integral della teoria quantistica delle (p,0)-forme. In particolare esso permette di dedurre correttamente la struttura dei ghost della teoria e la simmetria BRST associata. Per ottenere questa struttura è richiesta necessariamente una procedura di gauge fixing per eliminare completamente l'invarianza sotto trasformazioni di gauge. Tale procedura prevede l'eliminazione degli antifields in favore dei campi originali e dei ghosts e permette di implementare, direttamente nel path integral condizioni di gauge fixing covarianti necessari per definire correttamente i propagatori della teoria. Nell'ultima parte abbiamo presentato un’espansione dell’azione efficace (euclidea) che permette di studiare le divergenze della teoria. In particolare abbiamo calcolato i primi coefficienti di tale espansione (coefficienti di Seeley-DeWitt) tramite la tecnica dell'heat kernel. Questo calcolo ha tenuto conto dell'eventuale accoppiamento a una metrica di background cosi come di un possibile ulteriore accoppiamento alla traccia della connessione associata alla metrica.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In questa tesi viene affrontato lo studio degli integrali funzionali nella meccanica quantistica, sia come rielaborazione dell'operatore di evoluzione temporale che costruendo direttamente una somma sui cammini. Vengono inoltre messe in luce ambiguit\`a dovute alla discretizzazione dell'azione corrispondenti ai problemi di ordinamento operatoriale della formulazione canonica. Si descrive inoltre come una possibile scelta della discretizzazione dell'integrale funzionale pu\`o essere ottenuta utilizzando l'ordinamento di Weyl dell'opertore Hamiltoniano, sfruttando la relazione tra Hamiltoniana Weyl ordinata e la prescrizione del punto di mezzo da usare nella discretizzazione dell'azione classica. Studieremo in particolare il caso di una particella non relativistica interagente con un potenziale scalare, un potenziale vettore (campo magnetico) ed un potenziale tensore (metrica).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Normalmente la meccanica quantistica non relativistica è ricavata a partire dal fatto che una particella al tempo t non può essere descritta da una posizione $x$ definita, ma piuttosto è descritta da una funzione, chiamata funzione d'onda, per cui vale l'equazione differenziale di Schr\"odinger, e il cui modulo quadro in $x$ viene interpretato come la probabilità di rilevare la particella in tale posizione. Quindi grazie all'equazione di Schr\"odinger si studia la dinamica della funzione d'onda, la sua evoluzione temporale. Seguendo quest'approccio bisogna quindi abbandonare il concetto classico di traiettoria di una particella, piuttosto quello che si studia è la "traiettoria" della funzione d'onda nei vari casi di campi di forze che agiscono sulla particella. In questa tesi si è invece scelto di studiare un approccio diverso, ma anch'esso efficace nel descrivere i fenomeni della meccanica quantistica non relativistica, formulato per la prima volta negli anni '50 del secolo scorso dal dott. Richard P. Feynman. Tale approccio consiste nel considerare una particella rilevata in posizione $x_a$ nell'istante $t_a$, e studiarne la probabilità che questa ha, nelle varie configurazioni dei campi di forze in azione, di giungere alla posizione $x_b$ ad un successivo istante $t_b$. Per farlo si associa ad ogni percorso che congiunge questi due punti spazio-temporali $a$ e $b$ una quantità chiamata ampiezza di probabilità del percorso, e si sviluppa una tecnica che permette di sommare le ampiezze relative a tutti gli infiniti cammini possibili che portano da $a$ a $b$, ovvero si integra su tutte le traiettorie $x(t)$, questo tipo di integrale viene chiamato integrale di cammino o più comunemente path integral. Il modulo quadro di tale quantità darà la probabilità che la particella rilevata in $a$ verrà poi rilevata in $b$.