8 resultados para parallel robots,cable driven,underactuated,calibration,sensitivity,accuracy
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Underactuated cable-driven parallel robots (UACDPRs) shift a 6-degree-of-freedom end-effector (EE) with fewer than 6 cables. This thesis proposes a new automatic calibration technique that is applicable for under-actuated cable-driven parallel robots. The purpose of this work is to develop a method that uses free motion as an exciting trajectory for the acquisition of calibration data. The key point of this approach is to find a relationship between the unknown parameters to be calibrated (the lengths of the cables) and the parameters that could be measured by sensors (the swivel pulley angles measured by the encoders and roll-and-pitch angles measured by inclinometers on the platform). The equations involved are the geometrical-closure equations and the finite-difference velocity equations, solved using the least-squares algorithm. Simulations are performed on a parallel robot driven by 4 cables for validation. The final purpose of the calibration method is, still, the determination of the platform initial pose. As a consequence of underactuation, the EE is underconstrained and, for assigned cable lengths, the EE pose cannot be obtained by means of forward kinematics only. Hence, a direct-kinematics algorithm for a 4-cable UACDPR using redundant sensor measurements is proposed. The proposed method measures two orientation parameters of the EE besides cable lengths, in order to determine the other four pose variables, namely 3 position coordinates and one additional orientation parameter. Then, we study the performance of the direct-kinematics algorithm through the computation of the sensitivity of the direct-kinematics solution to measurement errors. Furthermore, position and orientation error upper limits are computed for bounded cable lengths errors resulting from the calibration procedure, and roll and pitch angles errors which are due to inclinometer inaccuracies.
Resumo:
In this work an Underactuated Cable-Driven Parallel Robot (UACDPR) that operates in the three dimensional Euclidean space is considered. The End-Effector has 6 degrees of freedom and is actuated by 4 cables, therefore from a mechanical point of view the robot is defined underconstrained. However, considering only three controlled pose variables, the degree of redundancy for the control theory can be considered one. The aim of this thesis is to design a feedback controller for a point-to-point motion that satisfies the transient requirements, and is capable of reducing oscillations that derive from the reduced number of constraints. A force control is chosen for the positioning of the End-Effector, and error with respect to the reference is computed through data measure of several sensors (load cells, encoders and inclinometers) such as cable lengths, tension and orientation of the platform. In order to express the relation between pose and cable tension, the inverse model is derived from the kinematic and dynamic model of the parallel robot. The intrinsic non-linear nature of UACDPRs systems introduces an additional level of complexity in the development of the controller, as a result the control law is composed by a partial feedback linearization, and damping injection to reduce orientation instability. The fourth cable allows to satisfy a further tension distribution constraint, ensuring positive tension during all the instants of motion. Then simulations with different initial conditions are presented in order to optimize control parameters, and lastly an experimental validation of the model is carried out, the results are analysed and limits of the presented approach are defined.
Resumo:
In this project an optimal pose selection method for the calibration of an overconstrained Cable-Driven Parallel robot is presented. This manipulator belongs to a subcategory of parallel robots, where the classic rigid "legs" are replaced by cables. Cables are flexible elements that bring advantages and disadvantages to the robot modeling. For this reason, there are many open research issues, and the calibration of geometric parameters is one of them. The identification of the geometry of a robot, in particular, is usually called Kinematic Calibration. Many methods have been proposed in the past years for the solution of the latter problem. Although these methods are based on calibration using different kinematic models, when the robot’s geometry becomes more complex, their robustness and reliability decrease. This fact makes the selection of the calibration poses more complicated. The position and the orientation of the endeffector in the workspace become important in terms of selection. Thus, in general, it is necessary to evaluate the robustness of the chosen calibration method, by means, for example, of a parameter such as the observability index. In fact, it is known from the theory, that the maximization of the above mentioned index identifies the best choice of calibration poses, and consequently, using this pose set may improve the calibration process. The objective of this thesis is to analyze optimization algorithms which aim to calculate an optimal choice of poses both in quantitative and qualitative terms. Quantitatively, because it is of fundamental importance to understand how many poses are needed. Not necessarily a greater number of poses leads to a better result. Qualitatively, because it is useful to understand if the selected combination of poses actually gives additional information in the process of the identification of the parameters.
Resumo:
In this thesis, we explore three methods for the geometrico-static modelling of continuum parallel robots. Inspired by biological trunks, tentacles and snakes, continuum robot designs can reach confined spaces, manipulate objects in complex environments and conform to curvilinear paths in space. In addition, parallel continuum manipulators have the potential to inherit some of the compactness and compliance of continuum robots while retaining some of the precision, stability and strength of rigid-links parallel robots. Subsequently, the foundation of our work is performed on slender beam by applying the Cosserat rod theory, appropriate to model continuum robots. After that, three different approaches are developed on a case study of a planar parallel continuum robot constituted of two connected flexible links. We solve the forward and inverse geometrico-static problem namely by using (a) shooting methods to obtain a numerical solution, (b) an elliptic method to find a quasi-analytical solution, and (c) the Corde model to perform further model analysis. The performances of each of the studied methods are evaluated and their limits are highlighted. This thesis is divided as follows. Chapter one gives the introduction on the field of the continuum robotics and introduce the parallel continuum robots that is studied in this work. Chapter two describe the geometrico-static problem and gives the mathematical description of this problem. Chapter three explains the numerical approach with the shooting method and chapter four introduce the quasi-analytical solution. Then, Chapter five introduce the analytic method inspired by the Corde model and chapter six gives the conclusions of this work.
Resumo:
One of the biggest challenges that contaminant hydrogeology is facing, is how to adequately address the uncertainty associated with model predictions. Uncertainty arise from multiple sources, such as: interpretative error, calibration accuracy, parameter sensitivity and variability. This critical issue needs to be properly addressed in order to support environmental decision-making processes. In this study, we perform Global Sensitivity Analysis (GSA) on a contaminant transport model for the assessment of hydrocarbon concentration in groundwater. We provide a quantification of the environmental impact and, given the incomplete knowledge of hydrogeological parameters, we evaluate which are the most influential, requiring greater accuracy in the calibration process. Parameters are treated as random variables and a variance-based GSA is performed in a optimized numerical Monte Carlo framework. The Sobol indices are adopted as sensitivity measures and they are computed by employing meta-models to characterize the migration process, while reducing the computational cost of the analysis. The proposed methodology allows us to: extend the number of Monte Carlo iterations, identify the influence of uncertain parameters and lead to considerable saving computational time obtaining an acceptable accuracy.
Resumo:
This thesis aims to understand the behavior of a low-rise unreinforced masonry building (URM), the typical residential house in the Netherlands, when subjected to low-intensity earthquakes. In fact, in the last decades, the Groningen region was hit by several shallow earthquakes caused by the extraction of natural gas. In particular, the focus is addressed to the internal non-structural walls and to their interaction with the structural parts of the building. A simple and cost-efficient 2D FEM model is developed, focused on the interfaces representing mortar layers that are present between the non-structural walls and the rest of the structure. As a reference for geometries and materials, it has been taken into consideration a prototype that was built in full-scale at the EUCENTRE laboratory of Pavia (Italy). Firstly, a quasi-static analysis is performed by gradually applying a prescribed displacement on the roof floor of the structure. Sensitivity analyses are conducted on some key parameters characterizing mortar. This analysis allows for the calibration of their values and the evaluation of the reliability of the model. Successively, a transient analysis is performed to effectively subject the model to a seismic action and hence also evaluate the mechanical response of the building over time. Moreover, it was possible to compare the results of this analysis with the displacements recorded in the experimental tests by creating a model representing the entire considered structure. As a result, some conditions for the model calibration are defined. The reliability of the model is then confirmed by both the reasonable results obtained from the sensitivity analysis and the compatibility of the values obtained for the top displacement of the roof floor of the experimental test, and the same value acquired from the structural model.
Resumo:
Modern High-Performance Computing HPC systems are gradually increasing in size and complexity due to the correspondent demand of larger simulations requiring more complicated tasks and higher accuracy. However, as side effects of the Dennard’s scaling approaching its ultimate power limit, the efficiency of software plays also an important role in increasing the overall performance of a computation. Tools to measure application performance in these increasingly complex environments provide insights into the intricate ways in which software and hardware interact. The monitoring of the power consumption in order to save energy is possible through processors interfaces like Intel Running Average Power Limit RAPL. Given the low level of these interfaces, they are often paired with an application-level tool like Performance Application Programming Interface PAPI. Since several problems in many heterogeneous fields can be represented as a complex linear system, an optimized and scalable linear system solver algorithm can decrease significantly the time spent to compute its resolution. One of the most widely used algorithms deployed for the resolution of large simulation is the Gaussian Elimination, which has its most popular implementation for HPC systems in the Scalable Linear Algebra PACKage ScaLAPACK library. However, another relevant algorithm, which is increasing in popularity in the academic field, is the Inhibition Method. This thesis compares the energy consumption of the Inhibition Method and Gaussian Elimination from ScaLAPACK to profile their execution during the resolution of linear systems above the HPC architecture offered by CINECA. Moreover, it also collates the energy and power values for different ranks, nodes, and sockets configurations. The monitoring tools employed to track the energy consumption of these algorithms are PAPI and RAPL, that will be integrated with the parallel execution of the algorithms managed with the Message Passing Interface MPI.
Resumo:
Miniaturized flying robotic platforms, called nano-drones, have the potential to revolutionize the autonomous robots industry sector thanks to their very small form factor. The nano-drones’ limited payload only allows for a sub-100mW microcontroller unit for the on-board computations. Therefore, traditional computer vision and control algorithms are too computationally expensive to be executed on board these palm-sized robots, and we are forced to rely on artificial intelligence to trade off accuracy in favor of lightweight pipelines for autonomous tasks. However, relying on deep learning exposes us to the problem of generalization since the deployment scenario of a convolutional neural network (CNN) is often composed by different visual cues and different features from those learned during training, leading to poor inference performances. Our objective is to develop and deploy and adaptation algorithm, based on the concept of latent replays, that would allow us to fine-tune a CNN to work in new and diverse deployment scenarios. To do so we start from an existing model for visual human pose estimation, called PULPFrontnet, which is used to identify the pose of a human subject in space through its 4 output variables, and we present the design of our novel adaptation algorithm, which features automatic data gathering and labeling and on-device deployment. We therefore showcase the ability of our algorithm to adapt PULP-Frontnet to new deployment scenarios, improving the R2 scores of the four network outputs, with respect to an unknown environment, from approximately [−0.2, 0.4, 0.0,−0.7] to [0.25, 0.45, 0.2, 0.1]. Finally we demonstrate how it is possible to fine-tune our neural network in real time (i.e., under 76 seconds), using the target parallel ultra-low power GAP 8 System-on-Chip on board the nano-drone, and we show how all adaptation operations can take place using less than 2mWh of energy, a small fraction of the available battery power.