3 resultados para pacs: data handling techniques

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we will discuss about a project started by the Emilia-Romagna Regional Government regarding the manage of the public transport. In particular we will perform a data mining analysis on the data-set of this project. After introducing the Weka software used to make our analysis, we will discover the most useful data mining techniques and algorithms; and we will show how these results can be used to violate the privacy of the same public transport operators. At the end, despite is off topic of this work, we will spend also a few words about how it's possible to prevent this kind of attack.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, data handling and data analysis in High Energy Physics requires a vast amount of computational power and storage. In particular, the world-wide LHC Com- puting Grid (LCG), an infrastructure and pool of services developed and deployed by a ample community of physicists and computer scientists, has demonstrated to be a game changer in the efficiency of data analyses during Run-I at the LHC, playing a crucial role in the Higgs boson discovery. Recently, the Cloud computing paradigm is emerging and reaching a considerable adoption level by many different scientific organizations and not only. Cloud allows to access and utilize not-owned large computing resources shared among many scientific communities. Considering the challenging requirements of LHC physics in Run-II and beyond, the LHC computing community is interested in exploring Clouds and see whether they can provide a complementary approach - or even a valid alternative - to the existing technological solutions based on Grid. In the LHC community, several experiments have been adopting Cloud approaches, and in particular the experience of the CMS experiment is of relevance to this thesis. The LHC Run-II has just started, and Cloud-based solutions are already in production for CMS. However, other approaches of Cloud usage are being thought of and are at the prototype level, as the work done in this thesis. This effort is of paramount importance to be able to equip CMS with the capability to elastically and flexibly access and utilize the computing resources needed to face the challenges of Run-III and Run-IV. The main purpose of this thesis is to present forefront Cloud approaches that allow the CMS experiment to extend to on-demand resources dynamically allocated as needed. Moreover, a direct access to Cloud resources is presented as suitable use case to face up with the CMS experiment needs. Chapter 1 presents an overview of High Energy Physics at the LHC and of the CMS experience in Run-I, as well as preparation for Run-II. Chapter 2 describes the current CMS Computing Model, and Chapter 3 provides Cloud approaches pursued and used within the CMS Collaboration. Chapter 4 and Chapter 5 discuss the original and forefront work done in this thesis to develop and test working prototypes of elastic extensions of CMS computing resources on Clouds, and HEP Computing “as a Service”. The impact of such work on a benchmark CMS physics use-cases is also demonstrated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis presents a study of the Grid data access patterns in distributed analysis in the CMS experiment at the LHC accelerator. This study ranges from the deep analysis of the historical patterns of access to the most relevant data types in CMS, to the exploitation of a supervised Machine Learning classification system to set-up a machinery able to eventually predict future data access patterns - i.e. the so-called dataset “popularity” of the CMS datasets on the Grid - with focus on specific data types. All the CMS workflows run on the Worldwide LHC Computing Grid (WCG) computing centers (Tiers), and in particular the distributed analysis systems sustains hundreds of users and applications submitted every day. These applications (or “jobs”) access different data types hosted on disk storage systems at a large set of WLCG Tiers. The detailed study of how this data is accessed, in terms of data types, hosting Tiers, and different time periods, allows to gain precious insight on storage occupancy over time and different access patterns, and ultimately to extract suggested actions based on this information (e.g. targetted disk clean-up and/or data replication). In this sense, the application of Machine Learning techniques allows to learn from past data and to gain predictability potential for the future CMS data access patterns. Chapter 1 provides an introduction to High Energy Physics at the LHC. Chapter 2 describes the CMS Computing Model, with special focus on the data management sector, also discussing the concept of dataset popularity. Chapter 3 describes the study of CMS data access patterns with different depth levels. Chapter 4 offers a brief introduction to basic machine learning concepts and gives an introduction to its application in CMS and discuss the results obtained by using this approach in the context of this thesis.