5 resultados para pacs: computer networks and intercomputer communications in office automation

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid development in the field of lighting and illumination allows low energy consumption and a rapid growth in the use, and development of solid-state sources. As the efficiency of these devices increases and their cost decreases there are predictions that they will become the dominant source for general illumination in the short term. The objective of this thesis is to study, through extensive simulations in realistic scenarios, the feasibility and exploitation of visible light communication (VLC) for vehicular ad hoc networks (VANETs) applications. A brief introduction will introduce the new scenario of smart cities in which visible light communication will become a fundamental enabling technology for the future communication systems. Specifically, this thesis focus on the acquisition of several, frequent, and small data packets from vehicles, exploited as sensors of the environment. The use of vehicles as sensors is a new paradigm to enable an efficient environment monitoring and an improved traffic management. In most cases, the sensed information must be collected at a remote control centre and one of the most challenging aspects is the uplink acquisition of data from vehicles. My thesis discusses the opportunity to take advantage of short range vehicle-to-vehicle (V2V) and vehicle-to-roadside (V2R) communications to offload the cellular networks. More specifically, it discusses the system design and assesses the obtainable cellular resource saving, by considering the impact of the percentage of vehicles equipped with short range communication devices, of the number of deployed road side units, and of the adopted routing protocol. When short range communications are concerned, WAVE/IEEE 802.11p is considered as standard for VANETs. Its use together with VLC will be considered in urban vehicular scenarios to let vehicles communicate without involving the cellular network. The study is conducted by simulation, considering both a simulation platform (SHINE, simulation platform for heterogeneous interworking networks) developed within the Wireless communication Laboratory (Wilab) of the University of Bologna and CNR, and network simulator (NS3). trying to realistically represent all the wireless network communication aspects. Specifically, simulation of vehicular system was performed and introduced in ns-3, creating a new module for the simulator. This module will help to study VLC applications in VANETs. Final observations would enhance and encourage potential research in the area and optimize performance of VLC systems applications in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, Deep Learning techniques have shown to perform well on a large variety of problems both in Computer Vision and Natural Language Processing, reaching and often surpassing the state of the art on many tasks. The rise of deep learning is also revolutionizing the entire field of Machine Learning and Pattern Recognition pushing forward the concepts of automatic feature extraction and unsupervised learning in general. However, despite the strong success both in science and business, deep learning has its own limitations. It is often questioned if such techniques are only some kind of brute-force statistical approaches and if they can only work in the context of High Performance Computing with tons of data. Another important question is whether they are really biologically inspired, as claimed in certain cases, and if they can scale well in terms of "intelligence". The dissertation is focused on trying to answer these key questions in the context of Computer Vision and, in particular, Object Recognition, a task that has been heavily revolutionized by recent advances in the field. Practically speaking, these answers are based on an exhaustive comparison between two, very different, deep learning techniques on the aforementioned task: Convolutional Neural Network (CNN) and Hierarchical Temporal memory (HTM). They stand for two different approaches and points of view within the big hat of deep learning and are the best choices to understand and point out strengths and weaknesses of each of them. CNN is considered one of the most classic and powerful supervised methods used today in machine learning and pattern recognition, especially in object recognition. CNNs are well received and accepted by the scientific community and are already deployed in large corporation like Google and Facebook for solving face recognition and image auto-tagging problems. HTM, on the other hand, is known as a new emerging paradigm and a new meanly-unsupervised method, that is more biologically inspired. It tries to gain more insights from the computational neuroscience community in order to incorporate concepts like time, context and attention during the learning process which are typical of the human brain. In the end, the thesis is supposed to prove that in certain cases, with a lower quantity of data, HTM can outperform CNN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa tesi si è studiato l’insorgere di eventi critici in un semplice modello neurale del tipo Integrate and Fire, basato su processi dinamici stocastici markoviani definiti su una rete. Il segnale neurale elettrico è stato modellato da un flusso di particelle. Si è concentrata l’attenzione sulla fase transiente del sistema, cercando di identificare fenomeni simili alla sincronizzazione neurale, la quale può essere considerata un evento critico. Sono state studiate reti particolarmente semplici, trovando che il modello proposto ha la capacità di produrre effetti "a cascata" nell’attività neurale, dovuti a Self Organized Criticality (auto organizzazione del sistema in stati instabili); questi effetti non vengono invece osservati in Random Walks sulle stesse reti. Si è visto che un piccolo stimolo random è capace di generare nell’attività della rete delle fluttuazioni notevoli, in particolar modo se il sistema si trova in una fase al limite dell’equilibrio. I picchi di attività così rilevati sono stati interpretati come valanghe di segnale neurale, fenomeno riconducibile alla sincronizzazione.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questa tesi si propone di innovare lo stato dell’arte dei metodi di analisi dell’eterogeneità in lesioni polmonari attualmente utilizzati, affiancando l’analisi funzionale (emodinamica) a quella morfologica, grazie allo sviluppo di nuove feature specifiche. Grazie alla collaborazione tra il Computer Vision Group (CVG) dell’Università di Bologna e l’Unità Operativa di Radiologia dell’IRCCS-IRST di Meldola (Istituto di Ricovero e Cura a Carattere Scientifico – Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori), è stato possibile analizzare un adeguato numero di casi reali di pazienti affetti da lesioni polmonari primitive, effettuando un’analisi dell’eterogeneità sia su sequenze di immagini TC baseline sia contrast-enhanced, consentendo quindi un confronto tra eterogeneità morfologica e funzionale. I risultati ottenuti sono infine discussi sulla base del confronto con le considerazioni di natura clinica effettuate in cieco da due esperti radiologi dell’IRCCS-IRST.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'obiettivo su cui è stata basata questa Tesi di Laurea è stato quello di integrare la tecnologia delle Wireless Sensor Networks (WSN) al contesto dell'Internet delle cose (IoT). Per poter raggiungere questo obiettivo, il primo passo è stato quello di approfondire il concetto dell'Internet delle cose, in modo tale da comprendere se effettivamente fosse stato possibile applicarlo anche alle WSNs. Quindi è stata analizzata l'architettura delle WSNs e successivamente è stata fatta una ricerca per capire quali fossero stati i vari tipi di sistemi operativi e protocolli di comunicazione supportati da queste reti. Infine sono state studiate alcune IoT software platforms. Il secondo passo è stato quindi di implementare uno stack software che abilitasse la comunicazione tra WSNs e una IoT platform. Come protocollo applicativo da utilizzare per la comunicazione con le WSNs è stato usato CoAP. Lo sviluppo di questo stack ha consentito di estendere la piattaforma SensibleThings e il linguaggio di programmazione utilizzato è stato Java. Come terzo passo è stata effettuata una ricerca per comprendere a quale scenario di applicazione reale, lo stack software progettato potesse essere applicato. Successivamente, al fine di testare il corretto funzionamento dello stack CoAP, è stata sviluppata una proof of concept application che simulasse un sistema per la rilevazione di incendi. Questo scenario era caratterizzato da due WSNs che inviavano la temperatura rilevata da sensori termici ad un terzo nodo che fungeva da control center, il cui compito era quello di capire se i valori ricevuti erano al di sopra di una certa soglia e quindi attivare un allarme. Infine, l'ultimo passo di questo lavoro di tesi è stato quello di valutare le performance del sistema sviluppato. I parametri usati per effettuare queste valutazioni sono stati: tempi di durata delle richieste CoAP, overhead introdotto dallo stack CoAP alla piattaforma Sensible Things e la scalabilità di un particolare componente dello stack. I risultati di questi test hanno mostrato che la soluzione sviluppata in questa tesi ha introdotto un overheadmolto limitato alla piattaforma preesistente e inoltre che non tutte le richieste hanno la stessa durata, in quanto essa dipende dal tipo della richiesta inviata verso una WSN. Tuttavia, le performance del sistema potrebbero essere ulteriormente migliorate, ad esempio sviluppando un algoritmo che consenta la gestione concorrente di richieste CoAP multiple inviate da uno stesso nodo. Inoltre, poichè in questo lavoro di tesi non è stato considerato il problema della sicurezza, una possibile estensione al lavoro svolto potrebbe essere quello di implementare delle politiche per una comunicazione sicura tra Sensible Things e le WSNs.