3 resultados para output and inflation comovement
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
This research is focussed on the study of Orcinus orca's communication system. The analysis of vocalizations emitted by marine mammals has started in the '80s and most studies have been carried out in the wild. In this regard the most studied animal has been common dolphin (Tursiops truncatus) as the numerous presence of captive individuals worldwide made researches easier to be carried out. Studies about Orcinus orca's vocalizations have mainly been carried out in the wild (most in British Columbia) because its maintenance in a controlled environment results to be very difficult, only 17 among parks and oceanaria worldwide have some Orcinus orca (45 overall among which 64% born in captivity). These researches showed that Orcinus orca emit three main different types of sounds, classified as: whistles, clicks and calls. Besides, it was discovered that different groups (pods) produce sounds belonging only to the relevant pod (dialects). It is rare to find two pods sharing some calls. The two pods usually live in adjacent areas and can form a clan. This study was carried out in a controlled environment in the Orca ocean structure (Loro Parque, Tenerife, Spain) where, at the moment (March 2012) 6 individuals are hosted. Here it was developed an automatic sound recording system. Thanks to the use of suitable mathematical algorithms that allow to isolate only "interesting" sound events that differ from the "background noise", it was possible to create a database. The visualization of the sound events collected in the database is carried out with the use of a software. By looking at this output and at the observation register we could match the animal to the sound produced. Three situations were detected and studied: 1) Chosen alone: the animal chooses to go to the recording pool but it is free to move to another pool with other individuals. 2) Put alone: the animal is put alone in the recording pool. 3) With other orcas: more animals are together in the recording pool. The statistic analysis show that animals emit more vocalizations when they are in the situation "Chosen alone". The research will continue in order to observe eventual differences in the individual repertoire of each Orcinus orca.
Resumo:
Holding the major share of stellar mass in galaxies and being also old and passively evolving, early-type galaxies (ETGs) are the primary probes in investigating these various evolution scenarios, as well as being useful means to provide insights on cosmological parameters. In this thesis work I focused specifically on ETGs and on their capability in constraining galaxy formation and evolution; in particular, the principal aims were to derive some of the ETGs evolutionary parameters, such as age, metallicity and star formation history (SFH) and to study their age-redshift and mass-age relations. In order to infer galaxy physical parameters, I used the public code STARLIGHT: this program provides a best fit to the observed spectrum from a combination of many theoretical models defined in user-made libraries. the comparison between the output and input light-weighted ages shows a good agreement starting from SNRs of ∼ 10, with a bias of ∼ 2.2% and a dispersion 3%. Furthermore, also metallicities and SFHs are well reproduced. In the second part of the thesis I performed an analysis on real data, starting from Sloan Digital Sky Survey (SDSS) spectra. I found that galaxies get older with cosmic time and with increasing mass (for a fixed redshift bin); absolute light-weighted ages, instead, result independent from the fitting parameters or the synthetic models used. Metallicities, instead, are very similar from each other and clearly consistent with the ones derived from the Lick indices. The predicted SFH indicates the presence of a double burst of star formation. Velocity dispersions and extinctiona are also well constrained, following the expected behaviours. As a further step, I also fitted single SDSS spectra (with SNR∼ 20), to verify that stacked spectra gave the same results without introducing any bias: this is an important check, if one wants to apply the method at higher z, where stacked spectra are necessary to increase the SNR. Our upcoming aim is to adopt this approach also on galaxy spectra obtained from higher redshift Surveys, such as BOSS (z ∼ 0.5), zCOSMOS (z 1), K20 (z ∼ 1), GMASS (z ∼ 1.5) and, eventually, Euclid (z 2). Indeed, I am currently carrying on a preliminary study to estabilish the applicability of the method to lower resolution, as well as higher redshift (z 2) spectra, just like the Euclid ones.
Resumo:
The use of wearable devices for the monitoring of biological potentials is an ever-growing area of research. Wearable devices for the monitoring of vital signs such as heart-rate, respiratory rate, cardiac output and blood oxygenation are necessary in determining the overall health of a patient and allowing earlier detection of adverse events such as heart attacks and strokes and earlier diagnosis of disease. This thesis describes a bio-potential acquisition embedded system designed with an innovative analog front-end, showing the performance in EMG and ECG applications and the comparison between different noise reduction algorithms. We demonstrate that the proposed system is able to acquire bio-potentials with a signal quality equivalent to state of the art bench-top biomedical devices and can be therefore used for monitoring purpose, with the advantages of a low-cost low-power wearable device.