3 resultados para optimization, heuristic, solver, operations, research
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Nel campo della Ricerca Operativa e dei problemi di ottimizzazione viene presentato un problema, denominato Bus Touring Problem (BTP), che modella una problematica riguardante il carico e l’instradamento di veicoli nella presenza di di vincoli temporali e topologici sui percorsi. Nel BTP, ci si pone il problema di stabilire una serie di rotte per la visita di punti di interesse dislocati geograficamente da parte di un insieme di comitive turistiche, ciascuna delle quali stabilisce preferenze riguardo le visite. Per gli spostamenti sono disponibili un numero limitato di mezzi di trasporto, in generale eterogenei, e di capacitá limitata. Le visite devono essere effettuate rispettando finestre temporali che indicano i periodi di apertura dei punti di interesse; per questi, inoltre, é specificato un numero massimo di visite ammesse. L’obiettivo é di organizzare il carico dei mezzi di trasporto e le rotte intraprese in modo da massimizzare la soddisfazione complessiva dei gruppi di turisti nel rispetto dei vincoli imposti. Viene presentato un algoritmo euristico basato su Tabu Search appositamente ideato e progettato per la risoluzione del BTP. Vengono presentati gli esperimenti effettuati riguardo la messa appunto dei parametri dell'algoritmo su un insieme di problemi di benchmark. Vengono presentati risultati estesi riguardo le soluzioni dei problemi. Infine, vengono presentate considerazioni ed indicazioni di sviluppo futuro in materia.
Resumo:
This thesis focuses on finding the optimum block cutting dimensions in terms of the environmental and economic factors by using a 3D algorithm for a limestone quarry in Foggia, Italy. The environmental concerns of quarrying operations are mainly: energy consumption, material waste, and pollution. The main economic concerns are the block recovery, the selling prices, and the production costs. Fractures adversely affect the block recovery ratio. With a fracture model, block production can be optimized. In this research, the waste volume produced by quarrying was minimised to increase the recovery ratio and ensure economic benefits. SlabCutOpt is a software developed at DICAM–University of Bologna for block cutting optimization which tests different cutting angles on the x-y-z planes to offer up alternative cutting methods. The program tests several block sizes and outputs the optimal result for each entry. By using SlabCutOpt, ten different block dimensions were analysed, the results indicated the maximum number of non-intersecting blocks for each dimension. After analysing the outputs, the block named number 1 with the dimensions ‘1mx1mx1m’ had the highest recovery ratio as 43% and the total Relative Money Value (RMV) with a value of 22829. Dimension number 1, also had the lowest waste volume, with a value of 3953.25 m3, for the total bench. For cutting the total bench volume of 6932.25m3, the diamond wire cutter had the lowest dust emission values for the block with the dimension ‘2mx2mx2m’, with a value of 24m3. When compared with the Eco-Label standards, block dimensions having surface area values lower than 15m2, were found to fit the natural resource waste criteria of the label, as the threshold required 25% of minimum recovery [1]. Due to the relativity of production costs, together with the Eco-Label threshold, the research recommends the selection of the blocks with a surface area value between 6m2 and 14m2.
Resumo:
Over one million people lost their lives in the last twenty years from natural disasters like wildfires, earthquakes and man-made disasters. In such scenarios the usage of a fleet of robots aims at the parallelization of the workload and thus increasing speed and capabilities to complete time sensitive missions. This work focuses on the development of a dynamic fleet management system, which consists in the management of multiple agents cooperating in order to accomplish tasks. We presented a Mixed Integer Programming problem for the management and planning of mission’s tasks. The problem was solved using both an exact and a heuristic approach. The latter is based on the idea of solving iteratively smaller instances of the complete problem. Alongside, a fast and efficient algorithm for estimation of travel times between tasks is proposed. Experimental results demonstrate that the proposed heuristic approach is able to generate quality solutions, within specific time limits, compared to the exact one.