2 resultados para optimising compiler

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

.NET Compiler Platform è un compilatore per i linguaggi C# e Visual Basic realizzato da Microsoft. L’innovazione apportata da tale strumento è l’introduzione di API che permettono di accedere al compilatore; in particolare, è possibile accedere alle strutture dati utilizzate al suo interno, quali simboli o AST, e controllare e/o modificare il processo di compilazione. Una parte di questo progetto, chiamato anche progetto Roslyn, è focalizzata sull’introduzione dello scripting per il linguaggio C#. In questa trattazione si è interessati a sperimentare le possibilità offerte da tale strumento nel campo dell’esecuzione dinamica di frammenti di codice. Gli obiettivi imposti si collocano nell’ambito della re-ingegnerizzazione e dello sviluppo di software. Tali obiettivi sono la re-implementazione dei filtri di selezione contenuti nel framework Phoenix, utilizzando le API di Roslyn per migliorarne le prestazioni, e la progettazione di un componente che realizzi una console per lo scripting C# dotata della possibilità di riferire dinamicamente librerie. Le API di compilazione si rivelano essere non propriamente adatte all’esecuzione immediata di frammenti di codice, nonostante ciò, è possibile, appoggiandosi alla reflection, utilizzarle per giungere a questo risultato. Lo scripting, invece, si rivela uno strumento dalle grandi potenzialità nel suddetto ambito.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of Tissue Engineering is to develop biological substitutes that will restore lost morphological and functional features of diseased or damaged portions of organs. Recently computer-aided technology has received considerable attention in the area of tissue engineering and the advance of additive manufacture (AM) techniques has significantly improved control over the pore network architecture of tissue engineering scaffolds. To regenerate tissues more efficiently, an ideal scaffold should have appropriate porosity and pore structure. More sophisticated porous configurations with higher architectures of the pore network and scaffolding structures that mimic the intricate architecture and complexity of native organs and tissues are then required. This study adopts a macro-structural shape design approach to the production of open porous materials (Titanium foams), which utilizes spatial periodicity as a simple way to generate the models. From among various pore architectures which have been studied, this work simulated pore structure by triply-periodic minimal surfaces (TPMS) for the construction of tissue engineering scaffolds. TPMS are shown to be a versatile source of biomorphic scaffold design. A set of tissue scaffolds using the TPMS-based unit cell libraries was designed. TPMS-based Titanium foams were meant to be printed three dimensional with the relative predicted geometry, microstructure and consequently mechanical properties. Trough a finite element analysis (FEA) the mechanical properties of the designed scaffolds were determined in compression and analyzed in terms of their porosity and assemblies of unit cells. The purpose of this work was to investigate the mechanical performance of TPMS models trying to understand the best compromise between mechanical and geometrical requirements of the scaffolds. The intention was to predict the structural modulus in open porous materials via structural design of interconnected three-dimensional lattices, hence optimising geometrical properties. With the aid of FEA results, it is expected that the effective mechanical properties for the TPMS-based scaffold units can be used to design optimized scaffolds for tissue engineering applications. Regardless of the influence of fabrication method, it is desirable to calculate scaffold properties so that the effect of these properties on tissue regeneration may be better understood.