2 resultados para optical fibers

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the recent years, vibration-based structural damage identification has been subject of significant research in structural engineering. The basic idea of vibration-based methods is that damage induces mechanical properties changes that cause anomalies in the dynamic response of the structure, which measures allow to localize damage and its extension. Vibration measured data, such as frequencies and mode shapes, can be used in the Finite Element Model Updating in order to adjust structural parameters sensible at damage (e.g. Young’s Modulus). The novel aspect of this thesis is the introduction into the objective function of accurate measures of strains mode shapes, evaluated through FBG sensors. After a review of the relevant literature, the case of study, i.e. an irregular prestressed concrete beam destined for roofing of industrial structures, will be presented. The mathematical model was built through FE models, studying static and dynamic behaviour of the element. Another analytical model was developed, based on the ‘Ritz method’, in order to investigate the possible interaction between the RC beam and the steel supporting table used for testing. Experimental data, recorded through the contemporary use of different measurement techniques (optical fibers, accelerometers, LVDTs) were compared whit theoretical data, allowing to detect the best model, for which have been outlined the settings for the updating procedure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to cope up with the ever increasing demand for larger transmission bandwidth, Radio over Fiber technology is a very beneficial solution. These systems are expected to play a major role within future fifth generation wireless networks due to their inherent capillary distribution properties. Nonlinear compensation techniques are becoming increasingly important to improve the performance of telecommunication channels by compensating for channel nonlinearities. Indeed, significant bounds on the technology usability and performance degradation occur due to nonlinear characteristics of optical transmitter, nonlinear generation of spurious frequencies, which, in the case of RoF links exploiting Directly Modulated Lasers , has the combined effect of laser chirp and optical fiber dispersion among its prevailing causes. The purpose of the research is to analyze some of the main causes of harmonic and intermodulation distortion present in Radio over Fiber (RoF) links, and to suggest a solution to reduce their effects, through a digital predistortion technique. Predistortion is an effective and interesting solution to linearize and this allows to demonstrate that the laser’s chirp and the optical fiber’s dispersion are the main causes which generate harmonic distortion. The improvements illustrated are only theoretical, based on a feasibility point of view. The simulations performed lead to significant improvements for short and long distances of radio over fiber link lengths. The algorithm utilized for simulation has been implemented on MATLAB. The effects of chirp and fiber nonlinearity in a directly modulated fiber transmission system are investigated by simulation, and a cost effective and rather simple technique for compensating these effects is discussed. A detailed description of its functional model is given, and its attractive features both in terms of quality improvement of the received signal, and cost effectiveness of the system are illustrated.