3 resultados para onshore produced water
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Boron is an element essential for various biological processes, nevertheless at high concentration it can cause health issues in both plants and animals, thus making boron a pollutant element. Low cost and effective polymeric adsorbents capable of removing boron in aqueous solution at neutral pH were prepared for this purpose. The adsorbent selectivity towards boron was conferred taking advantage of the interaction between boric acid and the alcoholic groups of N-methyl-D-Glucamine, which are able to form specific complexes. Two different kinds of devices were produced and tested: cross-linked chitosan hydrogel beads (CCBMG) and PVA/chitosan membranes, the latter taking advantage of scCO2-assisted phase inversion technique. The capability of the adsorbents to be regenerated and to allow recovery of boric acid from a solution emulating the concentration of boric acid in seawater were evaluated.
Resumo:
PLA is a bio-based polymer that is obtained from renewable resources and it is very promising for a sustainable packaging manufacturing. However, its gas and vapour barrier properties are not enough to comply with the requirements of MAP packaging of fresh foods, which need specific concentration of water and oxygen to avoid spoilage and to keep the organoleptic properties unaltered throughout their shelf-life. The use of waxes from natural renewable sources such as plants (e.g., candelilla wax, carnauba wax, rice bran wax, sunflower wax) or animals (e.g., beeswax) could tackle down the permeation of water vapour through the packaging without affecting its bio-based content. The core of this work is developing wax-based coatings with enhanced thermo-mechanical properties so that they can undergo thermoforming and a proper adhesion to the PLA substrate can be ensured. Chemical modifications and crosslinking of waxes are performed to produce wax-based alkyd resins. The synthesised materials are characterised both by DSC and FTIR. Films of the wax-based alkyds are produced in order to assess their water vapour permeability.
Resumo:
Flaring has been widely used in the upstream operation of the oil and gas industry, both onshore and offshore. It is considered a safe and reliable way to protect assets from overpressure and the environment from toxic gas using combustion. However, there are drawbacks to using flares, such as vibration and thermal radiation. Excessive contact with thermal radiation is harmful to offshore personnel and equipment. Research organizations and companies have invested time and money to combat this. Many technologies have been developed so far to reduce the risk of thermal radiation, one of them being the water curtain system. Several tests were done to see the effectiveness of the water curtain system in mitigating thermal radiation in an offshore environment. Each test varied in the flare output, wind speed, and the size of water droplets size of the water curtain. Later, the results of each test were compared and analyzed. The results showed that a water curtain system could be a solution to excessive thermal radiation that comes from an offshore flare. Moreover, the water curtain with smaller water droplets diameter gives a more favorable result in reducing thermal radiation. These results suggest that, although it offers simplicity and efficiency, designing an efficient water curtain system requires deep study. Various conditions, such as wind speed, flare intensity, and the size of the water droplets, plays a vital role in the effectiveness of the water curtain system in attenuating thermal radiation.