2 resultados para olfactory stimulus
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
L’interazione che abbiamo con l’ambiente che ci circonda dipende sia da diverse tipologie di stimoli esterni che percepiamo (tattili, visivi, acustici, ecc.) sia dalla loro elaborazione per opera del nostro sistema nervoso. A volte però, l’integrazione e l’elaborazione di tali input possono causare effetti d’illusione. Ciò si presenta, ad esempio, nella percezione tattile. Infatti, la percezione di distanze tattili varia al variare della regione corporea considerata. Il concetto che distanze sulla cute siano frequentemente erroneamente percepite, è stato scoperto circa un secolo fa da Weber. In particolare, una determinata distanza fisica, è percepita maggiore su parti del corpo che presentano una più alta densità di meccanocettori rispetto a distanze applicate su parti del corpo con inferiore densità. Oltre a questa illusione, un importante fenomeno osservato in vivo è rappresentato dal fatto che la percezione della distanza tattile dipende dall’orientazione degli stimoli applicati sulla cute. In sostanza, la distanza percepita su una regione cutanea varia al variare dell’orientazione degli stimoli applicati. Recentemente, Longo e Haggard (Longo & Haggard, J.Exp.Psychol. Hum Percept Perform 37: 720-726, 2011), allo scopo di investigare come sia rappresentato il nostro corpo all’interno del nostro cervello, hanno messo a confronto distanze tattili a diverse orientazioni sulla mano deducendo che la distanza fra due stimoli puntuali è percepita maggiore se applicata trasversalmente sulla mano anziché longitudinalmente. Tale illusione è nota con il nome di Illusione Tattile Orientazione-Dipendente e diversi risultati riportati in letteratura dimostrano che tale illusione dipende dalla distanza che intercorre fra i due stimoli puntuali sulla cute. Infatti, Green riporta in un suo articolo (Green, Percpept Pshycophys 31, 315-323, 1982) il fatto che maggiore sia la distanza applicata e maggiore risulterà l’effetto illusivo che si presenta. L’illusione di Weber e l’illusione tattile orientazione-dipendente sono spiegate in letteratura considerando differenze riguardanti la densità di recettori, gli effetti di magnificazione corticale a livello della corteccia primaria somatosensoriale (regioni della corteccia somatosensoriale, di dimensioni differenti, sono adibite a diverse regioni corporee) e differenze nella dimensione e forma dei campi recettivi. Tuttavia tali effetti di illusione risultano molto meno rilevanti rispetto a quelli che ci si aspetta semplicemente considerando i meccanismi fisiologici, elencati in precedenza, che li causano. Ciò suggerisce che l’informazione tattile elaborata a livello della corteccia primaria somatosensoriale, riceva successivi step di elaborazione in aree corticali di più alto livello. Esse agiscono allo scopo di ridurre il divario fra distanza percepita trasversalmente e distanza percepita longitudinalmente, rendendole più simili tra loro. Tale processo assume il nome di “Rescaling Process”. I meccanismi neurali che operano nel cervello allo scopo di garantire Rescaling Process restano ancora largamente sconosciuti. Perciò, lo scopo del mio progetto di tesi è stato quello di realizzare un modello di rete neurale che simulasse gli aspetti riguardanti la percezione tattile, l’illusione orientazione-dipendente e il processo di rescaling avanzando possibili ipotesi circa i meccanismi neurali che concorrono alla loro realizzazione. Il modello computazionale si compone di due diversi layers neurali che processano l’informazione tattile. Uno di questi rappresenta un’area corticale di più basso livello (chiamata Area1) nella quale una prima e distorta rappresentazione tattile è realizzata. Per questo, tale layer potrebbe rappresentare un’area della corteccia primaria somatosensoriale, dove la rappresentazione della distanza tattile è significativamente distorta a causa dell’anisotropia dei campi recettivi e della magnificazione corticale. Il secondo layer (chiamato Area2) rappresenta un’area di più alto livello che riceve le informazioni tattili dal primo e ne riduce la loro distorsione mediante Rescaling Process. Questo layer potrebbe rappresentare aree corticali superiori (ad esempio la corteccia parietale o quella temporale) adibite anch’esse alla percezione di distanze tattili ed implicate nel Rescaling Process. Nel modello, i neuroni in Area1 ricevono informazioni dagli stimoli esterni (applicati sulla cute) inviando quindi informazioni ai neuroni in Area2 mediante sinapsi Feed-forward eccitatorie. Di fatto, neuroni appartenenti ad uno stesso layer comunicano fra loro attraverso sinapsi laterali aventi una forma a cappello Messicano. E’ importante affermare che la rete neurale implementata è principalmente un modello concettuale che non si preme di fornire un’accurata riproduzione delle strutture fisiologiche ed anatomiche. Per questo occorre considerare un livello astratto di implementazione senza specificare un’esatta corrispondenza tra layers nel modello e regioni anatomiche presenti nel cervello. Tuttavia, i meccanismi inclusi nel modello sono biologicamente plausibili. Dunque la rete neurale può essere utile per una migliore comprensione dei molteplici meccanismi agenti nel nostro cervello, allo scopo di elaborare diversi input tattili. Infatti, il modello è in grado di riprodurre diversi risultati riportati negli articoli di Green e Longo & Haggard.
Resumo:
The rheological properties of block co-polymers in water solution at different pH have been investigated. The block copolymers are based on different architectures containing poly(ethylene glycol), poly(propylene glycol) and different blocks of polymer that change their hydrophobic/hydrophilic behavior as a function of pH. The polymer chains of the starting material were extended at their functional ends with the pH-sensitive units using ATRP; this mechanism of controlled radical polymerization was chosen because of the need to minimize polydispersity and avoid transfer reactions possibly leading to homopolymeric inpurities. The starting material were modified in order to use them as macroinitiator for ATRP. The kinetic of each ATRP reaction has been investigated, in order to be able to synthesize polymers with different degree of polymerization, stopping the reaction when the desired polymers chain length has been reached. We will use polymer chains with different basicity and degree of polymerization to link any possible effect of their presence to the conditions under which they become hydrophobic. It has been shown that the rate of polymerization changes changing the type of macroinitiator and the type of monomer synthesized. The slowest rate of polymerization is the one with the most hindered monomer synthesized using the macroinitiator with the highest molecular weight. The water solubility of the synthesized polymers changes depending on the pH of the solution and on the structure of the polymers. It has been shown using 1H-NMR that some of the synthesized polymers are capable to self-aggregation in water solution. The self-aggregation and the type of aggregation is influenced from the structure of the polymer and from the pH of the solution. Changing the structure of the polymers and the pH it is possible to obtain different type of aggregates in solution. This aggregates differ for the volume occupied from them, and for their hardness. Rheological measurements have been demonstrated that the synthesized polymers are capable to form gel phases. The gelation temperature changes changing the structure of the aggregates in solution and it is possible to correlate the changing in the gelation temperature with the changing in the structure of the polymer.