4 resultados para ocean acidification

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the industrial revolution, the ocean has absorbed around one third of the anthropogenic CO2, which induced a profound alteration of the carbonate system commonly known as ocean acidification. Since the preindustrial times, the average ocean surface water pH has fallen by 0.1 units, from approximately 8.2 to 8.1 and a further decrease of 0.4 pH units is expected for the end of the century. Despite their microscopic size, marine diatoms are bio-geo-chemically a very important group, responsible for the export of massive amount of carbon to deep waters and sediments. The knowledge of the potential effects of ocean acidification on the phytoplankton growth and on biological pump is still at its infancy. This study wants to investigate the effect of ocean acidification on the growth of the diatom Skeletonema marinoi and on its aggregation, using a mechanistic approach. The experiment consisted of two treatments (Present and Future) representing different pCO2 conditions and two sequential experimental phases. During the cell growth phase a culture of S. marinoi was inoculated into transparent bags and the effect of ocean acidification was studied on various growth parameters, including DOC and TEP production. The aggregation phase consisted in the incubation of the cultures into rolling tanks where the sinking of particles through the water column was simulated and aggregation promoted. Since few studies investigated the effect of pH on the growth of S. marinoi and none used pH ranges that are compatible with the OA scenarios, there were no baselines. I have shown here, that OA does not affect the cell growth of S. marinoi, suggesting that the physiology of this species is robust in respect to the changes in the carbonate chemistry expected for the end of the century. Furthermore, according to my results, OA does not affect the aggregation of S. marinoi in a consistent manner, suggesting that this process has a high natural variability but is not influenced by OA in a predictable way. The effect of OA was tested over a variety of factors including the number of aggregates produced, their size and sinking velocity, the algal, bacterial and TEP content. Many of these variables showed significant treatment effects but none of these were consistent between the two experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global warming and ocean acidification, due to rising atmospheric levels of CO2, represent an actual threat to terrestrial and marine environments. Since Industrial Revolution, in less of 250 years, pH of surface seawater decreased on average of 0.1 unit, and is expected to further decreases of approximately 0.3-0.4 units by the end of this century. Naturally acidified marine areas, such as CO2 vent systems at the Ischia Island, allow to study acclimatation and adaptation of individual species as well as the structure of communities, and ecosystems to OA. The main aim of this thesis was to study how hard bottom sublittoral benthic assemblages changed trough time along a pH gradient. For this purpose, the temporal dynamics of mature assemblages established on artificial substrates (volcanic tiles) over a 3 year- period were analysed. Our results revealed how composition and dynamics of the community were altered and highly simplified at different level of seawater acidification. In fact, extreme low values of pH (approximately 6.9), affected strongly the assemblages, reducing diversity both in terms of taxa and functional groups, respect to lower acidification levels (mean pH 7.8) and ambient conditions (8.1 unit). Temporal variation was observed in terms of species composition but not in functional groups. Variability was related to species belonging to the same functional group, suggesting the occurrence of functional redundancy. Therefore, the analysis of functional groups kept information on the structure, but lost information on species diversity and dynamics. Decreasing in ocean pH is only one of many future global changes that will occur at the end of this century (increase of ocean temperature, sea level rise, eutrophication etc.). The interaction between these factors and OA could exacerbate the community and ecosystem effects showed by this thesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ocean acidification is an effect of the rise in atmospheric CO2, which causes a reduction in the pH of the ocean and generates a number of changes in seawater chemistry and consequently potentially impacts seawater life. The effect of ocean acidification on metabolic processes (such as net community production and community respiration and on particulate organic carbon (POC) concentrations was investigated in summer 2012 at Cap de la Revellata in Corsica (Calvi, France). Coastal surface water was enclosed in 9 mesocosms and subjected to 6 pCO2 levels (3 replicated controls and 6 perturbations) for approximately one month. No trend was found in response to increasing pCO2 in any of the biological and particulate analyses. Community respiration was relatively stable throughout the experiment in all mesocosms, and net community production was most of the time close to zero. Similarly, POC concentrations were not affected by acidification during the whole experimental period. Such as the global ocean, the Mediterranean Sea has an oligotrophic nature. Based on present results, it seems likely that seawater acidification will not have significant effects on photosynthetic rates, microbial metabolism and carbon transport.