5 resultados para networks in organization
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The following thesis work focuses on the use and implementation of advanced models for measuring the resilience of water distribution networks. In particular, the functions implemented in GRA Tool, a software developed by the University of Exeter (UK), and the functions of the Toolkit of Epanet 2.2 were investigated. The study of the resilience and failure, obtained through GRA Tool and the development of the methodology based on the combined use of EPANET 2.2 and MATLAB software, was tested in a first phase, on a small-sized literature water distribution network, so that the variability of the results could be perceived more clearly and with greater immediacy, and then, on a more complex network, that of Modena. In the specific, it has been decided to go to recreate a mode of failure deferred in time, one proposed by the software GRA Tool, that is failure to the pipes, to make a comparison between the two methodologies. The analysis of hydraulic efficiency was conducted using a synthetic and global network performance index, i.e., Resilience index, introduced by Todini in the years 2000-2016. In fact, this index, being one of the parameters with which to evaluate the overall state of "hydraulic well-being" of a network, has the advantage of being able to act as a criterion for selecting any improvements to be made on the network itself. Furthermore, during these analyzes, was shown the analytical development undergone over time by the formula of the Resilience Index. The final intent of this thesis work was to understand by what means to improve the resilience of the system in question, as the introduction of the scenario linked to the rupture of the pipelines was designed to be able to identify the most problematic branches, i.e., those that in the event of a failure it would entail greater damage to the network, including lowering the Resilience Index.
Resumo:
Gossip protocols have been analyzed as a feasible solution for data dissemination on peer-to-peer networks. In this thesis, a new data dissemination protocol is proposed and compared with other known gossip mechanisms. Performance evaluation is based on simulation.
Resumo:
Wireless sensor networks (WSNs) consist of a large number of sensor nodes, characterized by low power constraint, limited transmission range and limited computational capabilities [1][2].The cost of these devices is constantly decreasing, making it possible to use a large number of sensor devices in a wide array of commercial, environmental, military, and healthcare fields. Some of these applications involve placing the sensors evenly spaced on a straight line for example in roads, bridges, tunnels, water catchments and water pipelines, city drainages, oil and gas pipelines etc., making a special class of these networks which we define as a Linear Wireless Network (LWN). In LWNs, data transmission happens hop by hop from the source to the destination, through a route composed of multiple relays. The peculiarity of the topology of LWNs, motivates the design of specialized protocols, taking advantage of the linearity of such networks, in order to increase reliability, communication efficiency, energy savings, network lifetime and to minimize the end-to-end delay [3]. In this thesis a novel contention based Medium Access Control (MAC) protocol called L-CSMA, specifically devised for LWNs is presented. The basic idea of L-CSMA is to assign different priorities to nodes based on their position along the line. The priority is assigned in terms of sensing duration, whereby nodes closer to the destination are assigned shorter sensing time compared to the rest of the nodes and hence higher priority. This mechanism speeds up the transmission of packets which are already in the path, making transmission flow more efficient. Using NS-3 simulator, the performance of L-CSMA in terms of packets success rate, that is, the percentage of packets that reach destination, and throughput are compared with that of IEEE 802.15.4 MAC protocol, de-facto standard for wireless sensor networks. In general, L-CSMA outperforms the IEEE 802.15.4 MAC protocol.
Resumo:
Automatic design has become a common approach to evolve complex networks, such as artificial neural networks (ANNs) and random boolean networks (RBNs), and many evolutionary setups have been discussed to increase the efficiency of this process. However networks evolved in this way have few limitations that should not be overlooked. One of these limitations is the black-box problem that refers to the impossibility to analyze internal behaviour of complex networks in an efficient and meaningful way. The aim of this study is to develop a methodology that make it possible to extract finite-state automata (FSAs) descriptions of robot behaviours from the dynamics of automatically designed complex controller networks. These FSAs unlike complex networks from which they're extracted are both readable and editable thus making the resulting designs much more valuable.
Resumo:
Industry 4.0 refers to the 4th industrial revolution and at its bases, we can see the digitalization and the automation of the assembly line. The whole production process has improved and evolved thanks to the advances made in networking, and AI studies, which include of course machine learning, cloud computing, IoT, and other technologies that are finally being implemented into the industrial scenario. All these technologies have in common a need for faster, more secure, robust, and reliable communication. One of the many solutions for these demands is the use of mobile communication technologies in the industrial environment, but which technology is better suited for these demands? Of course, the answer isn’t as simple as it seems. The 4th industrial revolution has a never seen incomparable potential with respect to the previous ones, every factory, enterprise, or company have different network demands, and even in each of these infrastructures, the demands may diversify by sector, or by application. For example, in the health care industry, there may be e a need for increased bandwidth for the analysis of high-definition videos or, faster speeds in order to have analytics occur in real-time, and again another application might be higher security and reliability to protect patients’ data. As seen above, choosing the right technology for the right environment and application, considers many things, and the ones just stated are but a speck of dust with respect to the overall picture. In this thesis, we will investigate a comparison between the use of two of the available technologies in use for the industrial environment: Wi-Fi 6 and 5G Private Networks in the specific case of a steel factory.