2 resultados para network prediction
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Il presente lavoro di tesi si inserisce nell’ambito della classificazione di dati ad alta dimensionalità, sviluppando un algoritmo basato sul metodo della Discriminant Analysis. Esso classifica i campioni attraverso le variabili prese a coppie formando un network a partire da quelle che hanno una performance sufficientemente elevata. Successivamente, l’algoritmo si avvale di proprietà topologiche dei network (in particolare la ricerca di subnetwork e misure di centralità di singoli nodi) per ottenere varie signature (sottoinsiemi delle variabili iniziali) con performance ottimali di classificazione e caratterizzate da una bassa dimensionalità (dell’ordine di 101, inferiore di almeno un fattore 103 rispetto alle variabili di partenza nei problemi trattati). Per fare ciò, l’algoritmo comprende una parte di definizione del network e un’altra di selezione e riduzione della signature, calcolando ad ogni passaggio la nuova capacità di classificazione operando test di cross-validazione (k-fold o leave- one-out). Considerato l’alto numero di variabili coinvolte nei problemi trattati – dell’ordine di 104 – l’algoritmo è stato necessariamente implementato su High-Performance Computer, con lo sviluppo in parallelo delle parti più onerose del codice C++, nella fattispecie il calcolo vero e proprio del di- scriminante e il sorting finale dei risultati. L’applicazione qui studiata è a dati high-throughput in ambito genetico, riguardanti l’espressione genica a livello cellulare, settore in cui i database frequentemente sono costituiti da un numero elevato di variabili (104 −105) a fronte di un basso numero di campioni (101 −102). In campo medico-clinico, la determinazione di signature a bassa dimensionalità per la discriminazione e classificazione di campioni (e.g. sano/malato, responder/not-responder, ecc.) è un problema di fondamentale importanza, ad esempio per la messa a punto di strategie terapeutiche personalizzate per specifici sottogruppi di pazienti attraverso la realizzazione di kit diagnostici per l’analisi di profili di espressione applicabili su larga scala. L’analisi effettuata in questa tesi su vari tipi di dati reali mostra che il metodo proposto, anche in confronto ad altri metodi esistenti basati o me- no sull’approccio a network, fornisce performance ottime, tenendo conto del fatto che il metodo produce signature con elevate performance di classifica- zione e contemporaneamente mantenendo molto ridotto il numero di variabili utilizzate per questo scopo.
Resumo:
The 5th generation of mobile networking introduces the concept of “Network slicing”, the network will be “sliced” horizontally, each slice will be compliant with different requirements in terms of network parameters such as bandwidth, latency. This technology is built on logical instead of physical resources, relies on virtual network as main concept to retrieve a logical resource. The Network Function Virtualisation provides the concept of logical resources for a virtual network function, enabling the concept virtual network; it relies on the Software Defined Networking as main technology to realize the virtual network as resource, it also define the concept of virtual network infrastructure with all components needed to enable the network slicing requirements. SDN itself uses cloud computing technology to realize the virtual network infrastructure, NFV uses also the virtual computing resources to enable the deployment of virtual network function instead of having custom hardware and software for each network function. The key of network slicing is the differentiation of slice in terms of Quality of Services parameters, which relies on the possibility to enable QoS management in cloud computing environment. The QoS in cloud computing denotes level of performances, reliability and availability offered. QoS is fundamental for cloud users, who expect providers to deliver the advertised quality characteristics, and for cloud providers, who need to find the right tradeoff between QoS levels that has possible to offer and operational costs. While QoS properties has received constant attention before the advent of cloud computing, performance heterogeneity and resource isolation mechanisms of cloud platforms have significantly complicated QoS analysis and deploying, prediction, and assurance. This is prompting several researchers to investigate automated QoS management methods that can leverage the high programmability of hardware and software resources in the cloud.