2 resultados para near net shape
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
This work presents the experimental development of a novel heat treatment for a high performance Laser Powder Bed Fusion Ti6Al4V alloy. Additive manufacturing production processes for titanium alloys are particularly of interest in cutting-edge engineering fields, however, high frequency laser induced thermal cycles generate a brittle as built microstructure. For this reason, heat treatments compliant with near net shape components are needed before their homologation and usage. The experimental campaign focused on the development of a multi-step heat treatment leading to a bilamellar microstructure. In fact, according to literature, such a microstructure should be promising in terms of mechanical properties both under static and cyclic loads. The heat treatment development has asked for the preliminary analyses of samples annealed and aged in laboratory, implementing several cycles, differing for what concerns temperatures, times and cooling rates. Such a characterization has been carried out through optical and electron microscopy analyses, image analyses, hardness and tensile tests. As a result, the most suitable thermal cycle has been selected and performed using industrial equipment on mini bending fatigue samples with different surface conditions. The same tests have been performed on a batch of traditionally treated samples, to provide with a comparison. This master thesis activity has finally led to the definition of a heat treatment resulting into a bilamellar microstructure, promising in terms of fatigue performances with respect to the traditionally treated alloy ones. The industrial implementation of such a heat treatment will require further improvements, particularly for what concerns the post annealing water quench, in order to prevent any surface alteration potentially responsible for the fatigue performances drop. Further development of the research may also include push-pull fatigue tests, crack grow propagation and residual stresses analyses.
Resumo:
The hadrontherapy exploits beams of charged particles against deep cancers. These ions have a depth-dose profile in which there is a little release of energy at the beginning of their path, whereas there is a sharp maximum, the Bragg Peak, near its end path. However, if heavy ions are used, the fragmentation of the projectile can happen and the fragments can release some dose outside the treatment volume beyond the Bragg peak. The fragmentation process takes place also when the Galactic Cosmic Rays at high energy hit the spaceship during space missions. In both cases some neutrons can be produced and if they interact with the absorbing materials nuclei some secondary particles are generated which can release energy. For this reason, studies about the cross section measurements of the fragments generated during the collisions of heavy ions against the tissues nuclei are very important. In this context, the FragmentatiOn Of Target (FOOT) experiment was born, and aims at measuring the differential and double differential fragmentation cross sections for different kinetic energies relevant to hadrontherapy and space radioprotection with high accuracy. Since during fragmentation processes also neutrons are produced, tests of a neutron detection system are ongoing. In particular, recently a neutron detector made up of a liquid organic scintillator, BC-501A with neutrons/gammas discrimination capability was studied, and it represents the core of this thesis. More in details, an analysis of the data collected at the GSI laboratory, in Darmstadt, Germany, is effectuated which consists in discriminating neutral and charged particles and then to separate neutrons from gammas. From this analysis, a preliminary energy-differential reaction cross-section for the production of neutrons in the 16O + (C_2H_4)_(n) and 16O + C reactions was estimated.