7 resultados para natice boltzmann-equation
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Questa tesi è una panoramica di alcuni concetti base su cui si fonda la dinamica delle galassie. Nel primo capitolo vengono messi in evidenza i concetti più generali dal punto di vista morfologico- strutturale attraverso la classificazione di Hubble. Nel secondo capitolo si mette in evidenza come un sistema possa essere definito non collisionale (attraverso la stima del tempo di rilassamento ai due corpi) e le conseguenze che ne derivano come, per esempio, l' anisotropia dello stesso sistema che conferisce alla galassia la sua classica forma “schiacciata”. Vengono poi descritti la collisional Boltzmann equation (CBE) e il teorema del viriale in forma tensoriale . Integrando la CBE nello spazio delle velocità otteniamo tre equazioni note come equazioni di Jeans: queste hanno una struttura del tutto identica a quelle della fluidodinamica ma con alcune eccezioni significative che non permettono di descrivere completamente la dinamica delle galassie attraverso la fluidodinamica. Il terzo capitolo è un excursus generale sulle galassie ellittiche: dalla loro struttura alla loro dinamica. Dall' applicazione del teorema del viriale ad un sistema ellittico si può notare come la forma “schiacciata” delle galassie sia una conseguenza dell' anisotropia del sistema e sia dovuta solo in minima parte alla rotazione. Successivamente viene presentato un modello galattico (quello di Jeans), che ci permette di calcolare una distribuzione di massa del sistema attraverso un' equazione che purtroppo non ha soluzione unica e quindi ci rende impossibile calcolare il rapporto massa- luminosità. Infine viene descritto il fundamental plane che è una relazione empirica tale per cui ad ogni galassia viene associato un determinato valore di raggio effettivo, dispersione di velocità e luminosità. Nel quarto ed ultimo capitolo viene trattata la dinamica delle parti più esterne di una galassia: disco e bracci. La dinamica del disco è descritta attraverso la curva di rotazione che, come vedremo, ha delle caratteristiche abbastanza diverse da una curva di rotazione di tipo kepleriano (quella che ad esempio descrive l' andamento della velocità in funzione della distanza nel nostro sistema solare). Infine viene descritta la dinamica dei bracci e la teoria delle onde di densità di Lin e Shu, due astronomi americani, che riesce a descrivere compiutamente la nascita e l' evoluzione dei bracci a spirale.
Resumo:
In this thesis, numerical methods aiming at determining the eigenfunctions, their adjoint and the corresponding eigenvalues of the two-group neutron diffusion equations representing any heterogeneous system are investigated. First, the classical power iteration method is modified so that the calculation of modes higher than the fundamental mode is possible. Thereafter, the Explicitly-Restarted Arnoldi method, belonging to the class of Krylov subspace methods, is touched upon. Although the modified power iteration method is a computationally-expensive algorithm, its main advantage is its robustness, i.e. the method always converges to the desired eigenfunctions without any need from the user to set up any parameter in the algorithm. On the other hand, the Arnoldi method, which requires some parameters to be defined by the user, is a very efficient method for calculating eigenfunctions of large sparse system of equations with a minimum computational effort. These methods are thereafter used for off-line analysis of the stability of Boiling Water Reactors. Since several oscillation modes are usually excited (global and regional oscillations) when unstable conditions are encountered, the characterization of the stability of the reactor using for instance the Decay Ratio as a stability indicator might be difficult if the contribution from each of the modes are not separated from each other. Such a modal decomposition is applied to a stability test performed at the Swedish Ringhals-1 unit in September 2002, after the use of the Arnoldi method for pre-calculating the different eigenmodes of the neutron flux throughout the reactor. The modal decomposition clearly demonstrates the excitation of both the global and regional oscillations. Furthermore, such oscillations are found to be intermittent with a time-varying phase shift between the first and second azimuthal modes.
Resumo:
tbd
Resumo:
L'equazione di Klein-Gordon descrive una ampia varietà di fenomeni fisici come la propagazione delle onde in Meccanica dei Continui ed il comportamento delle particelle spinless in Meccanica Quantistica Relativistica. Recentemente, la forma dissipativa di questa equazione si è rivelata essere una legge di evoluzione fondamentale in alcuni modelli cosmologici, in particolare nell'ambito dei cosiddetti modelli di k-inflazione in presenza di campi tachionici. L'obiettivo di questo lavoro consiste nell'analizzare gli effetti del parametro dissipativo sulla dispersione nelle soluzioni dell'equazione d'onda. Saranno inoltre studiati alcuni tipici problemi al contorno di particolare interesse cosmologico per mezzo di grafici corrispondenti alle soluzioni fondamentali (Funzioni di Green).
Resumo:
We have extended the Boltzmann code CLASS and studied a specific scalar tensor dark energy model: Induced Gravity
Resumo:
In questa trattazione si studia la regolarità delle soluzioni viscose plurisubarmoniche dell’equazione di Monge-Ampère complessa. Si tratta di un’equazione alle derivate parziali del secondo ordine completamente non lineare il cui termine del secondo ordine è il determinante della matrice hessiana complessa di una funzione incognita a valori reali u. Il principale risultato della tesi è un nuovo controesempio di tipo Pogorelov per questa equazione. Si prova cioè l’esistenza di soluzioni viscose plurisubarmoniche e non classiche per un equazione di Monge-Ampère complessa.