5 resultados para multi-storey apartment building

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this dissertation the influence of a precast concrete cladding system on structural robustness of a multi-storey steel-composite building is studied. The analysis follows the well-established framework developed at Imperial College London for the appraisal of robustness of multi-storey buildings. For this scope a simplified nonlinear model of a typical precast concrete façade-system is developed. Particular attention is given to the connection system between structural frame and panel, recognised as the driving component of the nonlinear behaviour of the façade-system. Only connections involved in the gravity load path are evaluated (bearing connections). Together with standard connection, a newly proposed system (Slotted Bearing Connection) is designed to achieve a more ductile behaviour of the panel-connection system. A parametric study involving the dimensions of panel-connection components is developed to search for an optimal configuration of the bearing connection. From the appraisal of structural robustness of the panelised frame it is found that the standard connection systems may reduce the robustness of a multi-storey frame due to a poor ductile behaviour while the newly proposed connection is able to guarantee an enhanced response to the panelised multi-storey frame thanks to a higher ductility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le strutture caratterizzate da una non coincidenza tra il baricentro delle masse e quello delle rigidezze, chiamate strutture eccentriche, sviluppano degli effetti torsionali se soggette ad un’eccitazione dinamica. Un’accurata analisi delle equazioni del moto di sistemi lineari e non lineari di strutture ad un singolo piano ha portato allo sviluppo di un metodo, detto metodo ALPHA, che, attraverso un parametro, detto parametro “alpha”, permette di stimare gli spostamenti di rotazione in funzione dei soli spostamenti longitudinali. Il limite di questo metodo, tuttavia, è quello di essere riferito a strutture ad un singolo piano, non comuni nella pratica progettuale: si è reso quindi necessario uno studio per testarne la validità anche per strutture multi piano, partendo da strutture semplici a due e tre piani. Data la semplicità del metodo ALPHA, si è deciso di affrontare questo problema cercando di cogliere il comportamento dei diversi piani della struttura multipiano con delle strutture ad un singolo piano. Sono state svolte numerose analisi numeriche in cui sono stati fatti variare i parametri di rigidezza, massa, eccentricità e distribuzione delle rigidezze dei vari piani; come indice di validità della struttura mono piano scelta si è utilizzato il rapporto tra il parametro “psi” dell’i-esimo piano e quello della struttura mono piano scelta, dove “psi” rappresenta il rapporto tra “R” ed “alpha”; “R” è il rapporto tra la massima rotazione e il massimo spostamento longitudinale per una struttura eccentrica soggetta ad un’eccitazione dinamica. Dai risultati ottenuti si deduce che, nella maggioranza dei casi, la struttura mono piano che meglio rappresenta il comportamento di tutti i piani è caratterizzata da massa e rigidezza dell’intera struttura multipiano, da un’eccentricità pari alla minore tra quelle dei vari piani e presenta la peggiore distribuzione delle rigidezze tra quelle che si riscontrano nei vari piani.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systems Biology is an innovative way of doing biology recently raised in bio-informatics contexts, characterised by the study of biological systems as complex systems with a strong focus on the system level and on the interaction dimension. In other words, the objective is to understand biological systems as a whole, putting on the foreground not only the study of the individual parts as standalone parts, but also of their interaction and of the global properties that emerge at the system level by means of the interaction among the parts. This thesis focuses on the adoption of multi-agent systems (MAS) as a suitable paradigm for Systems Biology, for developing models and simulation of complex biological systems. Multi-agent system have been recently introduced in informatics context as a suitabe paradigm for modelling and engineering complex systems. Roughly speaking, a MAS can be conceived as a set of autonomous and interacting entities, called agents, situated in some kind of nvironment, where they fruitfully interact and coordinate so as to obtain a coherent global system behaviour. The claim of this work is that the general properties of MAS make them an effective approach for modelling and building simulations of complex biological systems, following the methodological principles identified by Systems Biology. In particular, the thesis focuses on cell populations as biological systems. In order to support the claim, the thesis introduces and describes (i) a MAS-based model conceived for modelling the dynamics of systems of cells interacting inside cell environment called niches. (ii) a computational tool, developed for implementing the models and executing the simulations. The tool is meant to work as a kind of virtual laboratory, on top of which kinds of virtual experiments can be performed, characterised by the definition and execution of specific models implemented as MASs, so as to support the validation, falsification and improvement of the models through the observation and analysis of the simulations. A hematopoietic stem cell system is taken as reference case study for formulating a specific model and executing virtual experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis studies the static and seismic behavior of simple structures made with gabion box walls. The analysis was performed considering a one-story building with standard dimensions in plan (6m x 5m) and a lightweight timber roof. The main focus of the present investigation is to find the principals aspects of the seismic behavior of a one story building made with gabion box walls, in order to prevent a failure due to seismic actions and in this way help to reduce the seismic risk of developing countries where this natural disaster have a significant intensity. Regarding the gabion box wall, it has been performed some calculations and analysis in order to understand the static and dynamic behavior. From the static point of view, it has been performed a verification of the normal stress computing the normal stress that arrives at the base of the gabion wall and the corresponding capacity of the ground. Moreover, regarding the seismic analysis, it has been studied the in-plane and out-of-plane behavior. The most critical aspect was discovered to be the out-of-plane behavior, for which have been developed models considering the “rigid- no tension model” for masonry, finding a kinematically admissible multiplier that will create a collapse mechanism for the structure. Furthermore, it has been performed a FEM and DEM models to find the maximum displacement at the center of the wall, maximum tension stresses needed for calculating the steel connectors for joining consecutive gabions and the dimensions (length of the wall and distance between orthogonal walls or buttresses) of a geometrical configuration for the standard modulus of the structure, in order to ensure an adequate safety margin for earthquakes with a PGA around 0.4-0.5g. Using the results obtained before, it has been created some rules of thumb, that have to be satisfy in order to ensure a good behavior of these structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first goal of this study is to analyse a real-world multiproduct onshore pipeline system in order to verify its hydraulic configuration and operational feasibility by constructing a simulation model step by step from its elementary building blocks that permits to copy the operation of the real system as precisely as possible. The second goal is to develop this simulation model into a user-friendly tool that one could use to find an “optimal” or “best” product batch schedule for a one year time period. Such a batch schedule could change dynamically as perturbations occur during operation that influence the behaviour of the entire system. The result of the simulation, the ‘best’ batch schedule is the one that minimizes the operational costs in the system. The costs involved in the simulation are inventory costs, interface costs, pumping costs, and penalty costs assigned to any unforeseen situations. The key factor to determine the performance of the simulation model is the way time is represented. In our model an event based discrete time representation is selected as most appropriate for our purposes. This means that the time horizon is divided into intervals of unequal lengths based on events that change the state of the system. These events are the arrival/departure of the tanker ships, the openings and closures of loading/unloading valves of storage tanks at both terminals, and the arrivals/departures of trains/trucks at the Delivery Terminal. In the feasibility study we analyse the system’s operational performance with different Head Terminal storage capacity configurations. For these alternative configurations we evaluated the effect of different tanker ship delay magnitudes on the number of critical events and product interfaces generated, on the duration of pipeline stoppages, the satisfaction of the product demand and on the operative costs. Based on the results and the bottlenecks identified, we propose modifications in the original setup.