3 resultados para multi-media campaign
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
EUMETSAT (www.eumetsat.int) e’ l’agenzia europea per operazioni su satelliti per monitorare clima, meteo e ambiente terrestre. Dal centro operativo situato a Darmstadt (Germania), si controllano satelliti meteorologici su orbite geostazionarie e polari che raccolgono dati per l’osservazione dell’atmosfera, degli oceani e della superficie terrestre per un servizio continuo di 24/7. Un sistema di monitoraggio centralizzato per programmi diversi all’interno dell’ambiente operazionale di EUMETSAT, e’ dato da GEMS (Generic Event Monitoring System). Il software garantisce il controllo di diverse piattaforme, cross-monitoring di diverse sezioni operative, ed ha le caratteristiche per potere essere esteso a future missioni. L’attuale versione della GEMS MMI (Multi Media Interface), v. 3.6, utilizza standard Java Server Pages (JSP) e fa uso pesante di codici Java; utilizza inoltre files ASCII per filtri e display dei dati. Conseguenza diretta e’ ad esempio, il fatto che le informazioni non sono automaticamente aggiornate, ma hanno bisogno di ricaricare la pagina. Ulteriori inputs per una nuova versione della GEMS MMI vengono da diversi comportamenti anomali riportati durante l’uso quotidiano del software. La tesi si concentra sulla definizione di nuovi requisiti per una nuova versione della GEMS MMI (v. 4.4) da parte della divisione ingegneristica e di manutenzione di operazioni di EUMETSAT. Per le attivita’ di supporto, i test sono stati condotti presso Solenix. Il nuovo software permettera’ una migliore applicazione web, con tempi di risposta piu’ rapidi, aggiornamento delle informazioni automatico, utilizzo totale del database di GEMS e le capacita’ di filtri, insieme ad applicazioni per telefoni cellulari per il supporto delle attivita’ di reperibilita’. La nuova versione di GEMS avra’ una nuova Graphical User Interface (GUI) che utilizza tecnologie moderne. Per un ambiente di operazioni come e’ quello di EUMETSAT, dove l’affidabilita’ delle tecnologie e la longevita’ dell’approccio scelto sono di vitale importanza, non tutti gli attuali strumenti a disposizione sono adatti e hanno bisogno di essere migliorati. Allo stesso tempo, un’ interfaccia moderna, in termini di visual design, interattivita’ e funzionalita’, e’ importante per la nuova GEMS MMI.
Resumo:
Vengono analizzate le strategie di rilascio delle principali Distribuzioni Linux e i metodi per la compilazione automatizzata del software. Si propone quindi una nuova metodologia sia per il rilascio di media installabili e sia per la pacchettizzazione. Sfruttando le tecnologie del campo DevOps, si introduce quindi un alto grado di scalabilità anche in ambienti Cloud, grazie anche alla riproducibilità di ogni componente dell'infrastruttura proposta. Vedremo quindi come questo approccio aumenta l'automatizzazione nei cicli produttivi per la realizzazione della Distribuzione Sabayon Linux e per la definizione di un'infrastruttura automatizzata attualmente in production.
Resumo:
In questo studio, un multi-model ensemble è stato implementato e verificato, seguendo una delle priorità di ricerca del Subseasonal to Seasonal Prediction Project (S2S). Una regressione lineare è stata applicata ad un insieme di previsioni di ensemble su date passate, prodotte dai centri di previsione mensile del CNR-ISAC e ECMWF-IFS. Ognuna di queste contiene un membro di controllo e quattro elementi perturbati. Le variabili scelte per l'analisi sono l'altezza geopotenziale a 500 hPa, la temperatura a 850 hPa e la temperatura a 2 metri, la griglia spaziale ha risoluzione 1 ◦ × 1 ◦ lat-lon e sono stati utilizzati gli inverni dal 1990 al 2010. Le rianalisi di ERA-Interim sono utilizzate sia per realizzare la regressione, sia nella validazione dei risultati, mediante stimatori nonprobabilistici come lo scarto quadratico medio (RMSE) e la correlazione delle anomalie. Successivamente, tecniche di Model Output Statistics (MOS) e Direct Model Output (DMO) sono applicate al multi-model ensemble per ottenere previsioni probabilistiche per la media settimanale delle anomalie di temperatura a 2 metri. I metodi MOS utilizzati sono la regressione logistica e la regressione Gaussiana non-omogenea, mentre quelli DMO sono il democratic voting e il Tukey plotting position. Queste tecniche sono applicate anche ai singoli modelli in modo da effettuare confronti basati su stimatori probabilistici, come il ranked probability skill score, il discrete ranked probability skill score e il reliability diagram. Entrambe le tipologie di stimatori mostrano come il multi-model abbia migliori performance rispetto ai singoli modelli. Inoltre, i valori più alti di stimatori probabilistici sono ottenuti usando una regressione logistica sulla sola media di ensemble. Applicando la regressione a dataset di dimensione ridotta, abbiamo realizzato una curva di apprendimento che mostra come un aumento del numero di date nella fase di addestramento non produrrebbe ulteriori miglioramenti.