2 resultados para monosaccharide

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biomass transformation into high-value chemicals has attracted attention according to the “green chemistry” principles. Low price and high availability make biomass one of the most interesting renewable resources as it provides the means to create sustainable alternatives to the oil-derived building blocks of the chemical industry In recent year, the need for alternative environmentally friendly routes to drive chemical reactions has in photocatalytic processes an interesting way to obtain valuable chemicals from various sources using the solar light as energy source. The purpose of this work was to use supported noble metal nanoparticles in the selective photo-oxidation of glucose through using visible light. Glucose was chosen as model molecule because it is the cheapest and the most common monosaccharide. Few studies about glucose photo oxidation have been conducted so far, and reaction mechanism is still not totally explained. The aim of this work was to systematically analyze and assess the impact of several parameters (eg. catalyst/substrate ratio, reaction time, effect of the solvent and light source) on the reaction pathway and to monitor the product distribution in order to draw a general reaction scheme for the photo oxidation of glucose under visible light. This study regards the reaction mechanism and the influence of several parameters, such as solvent, light power and substrate concentration. Furthermore, the work focuses on the influence of gold and silver nanoparticles and on the influence of metal loading. The glucose oxidation was monitored through the mass balance and the products selectivity. Reactions were evaluated in terms of glucose conversion, mass balance and selectivities towards arabinose and gluconic acid. In conclusion, this study is able to demonstrate that the photo oxidation of glucose under visible light is feasible; the full identification of the main products allows, for the first time, a comprehensive reaction mechanism scheme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Incorporation of the relevant monosaccharide N-Acetyl-D-glucosamine (GlcNAc) into synthetic oligosaccharides by chemical glycosylation is still a very challenging object of studies, since direct reactions are low yielding. This issue is generally ascribed to its low solubility in common solvents and to the formation of a poorly reactive oxazoline intermediate, which is typically bypassed by introducing extra synthetic steps to avoid the presence of the NHAc moiety during glycosylation. Recently, a new direct Lewis acids-catalysed GlcNAc-ylation protocol has been disclosed, with acylated donors appearing to hold potential for high yielding glycosylation reactions. This master project focused indeed on a novel synthesis of promising 1-acyl GlcNAc donors, in order to test them in direct Lewis acid catalysed glycosylation without the need of N-protecting groups. Screening of various Lewis acids and reaction conditions with these acylated donors has been carried out, in presence of reactive primary alcohols as well as more challenging carbohydrate acceptor alcohols. These experiments demonstrated that the fine tuning of the leaving group combined with a suitable metal triflate could lead to a successful reaction outcome in the direct glycosylation. Successful methodology of this kind would provide rapid access to naturally occurring N-glycan motifs, such as the highly relevant human milk oligosaccharides (HMOs).