5 resultados para modelling the robot

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il lavoro è dedicato all'analisi fisica e alla modellizzazione dello strato limite atmosferico in condizioni stabili. L'obiettivo principale è quello di migliorare i modelli di parametrizzazione della turbulenza attualmente utilizzati dai modelli meteorologici a grande scala. Questi modelli di parametrizzazione della turbolenza consistono nell' esprimere gli stress di Reynolds come funzioni dei campi medi (componenti orizzontali della velocità e temperatura potenziale) usando delle chiusure. La maggior parte delle chiusure sono state sviluppate per i casi quasi-neutrali, e la difficoltà è trattare l'effetto della stabilità in modo rigoroso. Studieremo in dettaglio due differenti modelli di chiusura della turbolenza per lo strato limite stabile basati su assunzioni diverse: uno schema TKE-l (Mellor-Yamada,1982), che è usato nel modello di previsione BOLAM (Bologna Limited Area Model), e uno schema sviluppato recentemente da Mauritsen et al. (2007). Le assunzioni delle chiusure dei due schemi sono analizzate con dati sperimentali provenienti dalla torre di Cabauw in Olanda e dal sito CIBA in Spagna. Questi schemi di parametrizzazione della turbolenza sono quindi inseriti all'interno di un modello colonnare dello strato limite atmosferico, per testare le loro predizioni senza influenze esterne. Il confronto tra i differenti schemi è effettuato su un caso ben documentato in letteratura, il "GABLS1". Per confermare la validità delle predizioni, un dataset tridimensionale è creato simulando lo stesso caso GABLS1 con una Large Eddy Simulation. ARPS (Advanced Regional Prediction System) è stato usato per questo scopo. La stratificazione stabile vincola il passo di griglia, poichè la LES deve essere ad una risoluzione abbastanza elevata affinchè le tipiche scale verticali di moto siano correttamente risolte. Il confronto di questo dataset tridimensionale con le predizioni degli schemi turbolenti permettono di proporre un insieme di nuove chiusure atte a migliorare il modello di turbolenza di BOLAM. Il lavoro è stato compiuto all' ISAC-CNR di Bologna e al LEGI di Grenoble.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Standard Cosmological Model is generally accepted by the scientific community, there are still an amount of unresolved issues. From the observable characteristics of the structures in the Universe,it should be possible to impose constraints on the cosmological parameters. Cosmic Voids (CV) are a major component of the LSS and have been shown to possess great potential for constraining DE and testing theories of gravity. But a gap between CV observations and theory still persists. A theoretical model for void statistical distribution as a function of size exists (SvdW) However, the SvdW model has been unsuccesful in reproducing the results obtained from cosmological simulations. This undermines the possibility of using voids as cosmological probes. The goal of our thesis work is to cover the gap between theoretical predictions and measured distributions of cosmic voids. We develop an algorithm to identify voids in simulations,consistently with theory. We inspecting the possibilities offered by a recently proposed refinement of the SvdW (the Vdn model, Jennings et al., 2013). Comparing void catalogues to theory, we validate the Vdn model, finding that it is reliable over a large range of radii, at all the redshifts considered and for all the cosmological models inspected. We have then searched for a size function model for voids identified in a distribution of biased tracers. We find that, naively applying the same procedure used for the unbiased tracers to a halo mock distribution does not provide success- full results, suggesting that the Vdn model requires to be reconsidered when dealing with biased samples. Thus, we test two alternative exten- sions of the model and find that two scaling relations exist: both the Dark Matter void radii and the underlying Dark Matter density contrast scale with the halo-defined void radii. We use these findings to develop a semi-analytical model which gives promising results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the collective imaginaries a robot is a human like machine as any androids in science fiction. However the type of robots that you will encounter most frequently are machinery that do work that is too dangerous, boring or onerous. Most of the robots in the world are of this type. They can be found in auto, medical, manufacturing and space industries. Therefore a robot is a system that contains sensors, control systems, manipulators, power supplies and software all working together to perform a task. The development and use of such a system is an active area of research and one of the main problems is the development of interaction skills with the surrounding environment, which include the ability to grasp objects. To perform this task the robot needs to sense the environment and acquire the object informations, physical attributes that may influence a grasp. Humans can solve this grasping problem easily due to their past experiences, that is why many researchers are approaching it from a machine learning perspective finding grasp of an object using information of already known objects. But humans can select the best grasp amongst a vast repertoire not only considering the physical attributes of the object to grasp but even to obtain a certain effect. This is why in our case the study in the area of robot manipulation is focused on grasping and integrating symbolic tasks with data gained through sensors. The learning model is based on Bayesian Network to encode the statistical dependencies between the data collected by the sensors and the symbolic task. This data representation has several advantages. It allows to take into account the uncertainty of the real world, allowing to deal with sensor noise, encodes notion of causality and provides an unified network for learning. Since the network is actually implemented and based on the human expert knowledge, it is very interesting to implement an automated method to learn the structure as in the future more tasks and object features can be introduced and a complex network design based only on human expert knowledge can become unreliable. Since structure learning algorithms presents some weaknesses, the goal of this thesis is to analyze real data used in the network modeled by the human expert, implement a feasible structure learning approach and compare the results with the network designed by the expert in order to possibly enhance it.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of the work is to conduct a finite element model analysis on a small – size concrete beam and on a full size concrete beam internally reinforced with BFRP exposed at elevated temperatures. Experimental tests performed at Kingston University have been used to compare the results from the numerical analysis for the small – size concrete beam. Once the behavior of the small – size beam at room temperature is investigated and switching to the heating phase reinforced beams are tested at 100°C, 200°C and 300°C in loaded condition. The aim of the finite element analysis is to reflect the three – point bending test adopted into the oven during the exposure of the beam at room temperature and at elevated temperatures. Performance and deformability of reinforced beams are straightly correlated to the material properties and a wide analysis on elastic modulus and coefficient of thermal expansion is given in this work. Develop a good correlation between the numerical model and the experimental test is the main objective of the analysis on the small – size concrete beam, for both modelling the aim is also to estimate which is the deterioration of the material properties due to the heating process and the influence of different parameters on the final result. The focus of the full – size modelling which involved the last part of this work is to evaluate the effect of elevated temperatures, the material deterioration and the deflection trend on a reinforced beam characterized by a different size. A comparison between the results from different modelling has been developed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Systems Biology is an innovative way of doing biology recently raised in bio-informatics contexts, characterised by the study of biological systems as complex systems with a strong focus on the system level and on the interaction dimension. In other words, the objective is to understand biological systems as a whole, putting on the foreground not only the study of the individual parts as standalone parts, but also of their interaction and of the global properties that emerge at the system level by means of the interaction among the parts. This thesis focuses on the adoption of multi-agent systems (MAS) as a suitable paradigm for Systems Biology, for developing models and simulation of complex biological systems. Multi-agent system have been recently introduced in informatics context as a suitabe paradigm for modelling and engineering complex systems. Roughly speaking, a MAS can be conceived as a set of autonomous and interacting entities, called agents, situated in some kind of nvironment, where they fruitfully interact and coordinate so as to obtain a coherent global system behaviour. The claim of this work is that the general properties of MAS make them an effective approach for modelling and building simulations of complex biological systems, following the methodological principles identified by Systems Biology. In particular, the thesis focuses on cell populations as biological systems. In order to support the claim, the thesis introduces and describes (i) a MAS-based model conceived for modelling the dynamics of systems of cells interacting inside cell environment called niches. (ii) a computational tool, developed for implementing the models and executing the simulations. The tool is meant to work as a kind of virtual laboratory, on top of which kinds of virtual experiments can be performed, characterised by the definition and execution of specific models implemented as MASs, so as to support the validation, falsification and improvement of the models through the observation and analysis of the simulations. A hematopoietic stem cell system is taken as reference case study for formulating a specific model and executing virtual experiments.