2 resultados para minorities in science
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
L'Open innovation (OI) rappresenta un concetto complesso, pieno di sfaccettature e dimensioni di analisi. Il seguente elaborato adotta un approccio micro-fondazionale (Abell et al., 2008) al fine di studiare l'Individuo nella sua relazione con questo costrutto. Nello specifico l'obiettivo è quello di studiare comportamenti che l'individuo adotta al fine di perseguire determinati "Social Outcomes"(pratiche di Open innovation implementate a livello di organizzazione). Allo studio dei comportamenti si aggiunge la proposta di un set di KPI, atti a misurarli in modo dinamico. Un driver fondamentale è il focus sul contesto scientifico: nello specifico vengono studiati i comportamenti collaborativi messi in atto da scienziati lungo il processo innovativo (Beck et al., 2022). Lo studio deriva da una meta analisi e interviste etnografiche. L'analisi è stata condotta su Scopus e Scholar dove è stato inserito un ampio set di parole chiave (e.g. ”Open innovation & Measures/scales”, "Open innovation in Science (OIS)", “University-Industry collaboration”, …). Sono stati estratti articoli rilevanti che proponevano scale per misurare diversi costrutti collegati ad OI(Antons et al., 2017) (Boardman and Corley, 2008). Sono stati estratti gli items dalle scale e convertiti in comportamenti relativi alla pratica di OIS, sulla base del framework proposto da Beck et al. (2022). Sono stati ottenuti 48 comportamenti unici da 8 scale diverse: sono stati clusterizzati al fine di ottenere 10 cluster di comportamenti omogenei. La clusterizzazione è stata condotta a partire da una matrice di similarità creata da 5 esperti, sottoposta al Software Ucinet. I cluster così formati sono stati la base per generare un set di 24 kpi, derivanti dai comportamenti, e suddivisi tra i vari cluster. Sono stati definiti 5 ulteriori indicatori a partire da interviste proposte a 13 partecipanti tra ricercatori e professori. Questi ultimi KPI derivano dai valori trainanti per i ricercatori, emersi come insights.
Resumo:
In the collective imaginaries a robot is a human like machine as any androids in science fiction. However the type of robots that you will encounter most frequently are machinery that do work that is too dangerous, boring or onerous. Most of the robots in the world are of this type. They can be found in auto, medical, manufacturing and space industries. Therefore a robot is a system that contains sensors, control systems, manipulators, power supplies and software all working together to perform a task. The development and use of such a system is an active area of research and one of the main problems is the development of interaction skills with the surrounding environment, which include the ability to grasp objects. To perform this task the robot needs to sense the environment and acquire the object informations, physical attributes that may influence a grasp. Humans can solve this grasping problem easily due to their past experiences, that is why many researchers are approaching it from a machine learning perspective finding grasp of an object using information of already known objects. But humans can select the best grasp amongst a vast repertoire not only considering the physical attributes of the object to grasp but even to obtain a certain effect. This is why in our case the study in the area of robot manipulation is focused on grasping and integrating symbolic tasks with data gained through sensors. The learning model is based on Bayesian Network to encode the statistical dependencies between the data collected by the sensors and the symbolic task. This data representation has several advantages. It allows to take into account the uncertainty of the real world, allowing to deal with sensor noise, encodes notion of causality and provides an unified network for learning. Since the network is actually implemented and based on the human expert knowledge, it is very interesting to implement an automated method to learn the structure as in the future more tasks and object features can be introduced and a complex network design based only on human expert knowledge can become unreliable. Since structure learning algorithms presents some weaknesses, the goal of this thesis is to analyze real data used in the network modeled by the human expert, implement a feasible structure learning approach and compare the results with the network designed by the expert in order to possibly enhance it.