2 resultados para metal hexacyanoferrate

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Due to the limited resources of lithium, new chemistries based on the abundant and cheap sodium and even zinc have been proposed for the battery market. Prussian Blue Analogues (PBAs) are a class of compounds which have been explored for many different applications because of their intriguing electrochemical and magnetic properties. Manganese and titanium hexacyanoferrate (MnHCF and TiHCF) belong to the class of PBAs. In this work, MnHCF and TiHCF electrodes were synthetized, cycled with cyclic voltammetry (CV) in different setups and subsequently, the surfaces were characterized with X-ray Photoelectron Spectroscopy (XPS). The setups chosen for CVs were coin cell with zinc aqueous solution for the MnHCF series, three-electrode cell and symmetric coin cell with sodium aqueous solution for the TiHCF series. The electrodes were treated with different number of cycles to evaluate the chemical changes and alterations in oxidation states during cycling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Manganese Hexacyanoferrate (MnHCF) and nickel doped manganese hexacyanoferrate were synthesized by simple co-precipitation method. The water content and chemical formula was obtained by TGA and MP-AES measurements, functional groups by FT-IR analysis, the crystal structure by PXRD and a local geometry by XAS. Elemental species of cycled samples were further investigated by TXM and 2D XRF. Electrochemical tests were performed in the glass cell. With addition of nickel, vacancies and water content increased in the sample. Crystal structure changed from monoclinic to cubic. Ni disturbed the local structure of Mn, site, however, almost no change was observed in Fe site. After charge/discharge cycling of MnHCF intercalation was already found in the peripheries of charged species after 20 cycle in 2D XRF analysis and randomly distributed intercalated regions after 50 cycles in TXM analysis. Cyclic voltammetry showed that peak-to-peak separation is increasing in case of the addition of Ni to MnHCF.