3 resultados para medical image segmentation

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lo studio dell’intelligenza artificiale si pone come obiettivo la risoluzione di una classe di problemi che richiedono processi cognitivi difficilmente codificabili in un algoritmo per essere risolti. Il riconoscimento visivo di forme e figure, l’interpretazione di suoni, i giochi a conoscenza incompleta, fanno capo alla capacità umana di interpretare input parziali come se fossero completi, e di agire di conseguenza. Nel primo capitolo della presente tesi sarà costruito un semplice formalismo matematico per descrivere l’atto di compiere scelte. Il processo di “apprendimento” verrà descritto in termini della massimizzazione di una funzione di prestazione su di uno spazio di parametri per un ansatz di una funzione da uno spazio vettoriale ad un insieme finito e discreto di scelte, tramite un set di addestramento che descrive degli esempi di scelte corrette da riprodurre. Saranno analizzate, alla luce di questo formalismo, alcune delle più diffuse tecniche di artificial intelligence, e saranno evidenziate alcune problematiche derivanti dall’uso di queste tecniche. Nel secondo capitolo lo stesso formalismo verrà applicato ad una ridefinizione meno intuitiva ma più funzionale di funzione di prestazione che permetterà, per un ansatz lineare, la formulazione esplicita di un set di equazioni nelle componenti del vettore nello spazio dei parametri che individua il massimo assoluto della funzione di prestazione. La soluzione di questo set di equazioni sarà trattata grazie al teorema delle contrazioni. Una naturale generalizzazione polinomiale verrà inoltre mostrata. Nel terzo capitolo verranno studiati più nel dettaglio alcuni esempi a cui quanto ricavato nel secondo capitolo può essere applicato. Verrà introdotto il concetto di grado intrinseco di un problema. Verranno inoltre discusse alcuni accorgimenti prestazionali, quali l’eliminazione degli zeri, la precomputazione analitica, il fingerprinting e il riordino delle componenti per lo sviluppo parziale di prodotti scalari ad alta dimensionalità. Verranno infine introdotti i problemi a scelta unica, ossia quella classe di problemi per cui è possibile disporre di un set di addestramento solo per una scelta. Nel quarto capitolo verrà discusso più in dettaglio un esempio di applicazione nel campo della diagnostica medica per immagini, in particolare verrà trattato il problema della computer aided detection per il rilevamento di microcalcificazioni nelle mammografie.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tra le patologie ossee attualmente riconosciute, l’osteoporosi ricopre il ruolo di protagonista data le sua diffusione globale e la multifattorialità delle cause che ne provocano la comparsa. Essa è caratterizzata da una diminuzione quantitativa della massa ossea e da alterazioni qualitative della micro-architettura del tessuto osseo con conseguente aumento della fragilità di quest’ultimo e relativo rischio di frattura. In campo medico-scientifico l’imaging con raggi X, in particolare quello tomografico, da decenni offre un ottimo supporto per la caratterizzazione ossea; nello specifico la microtomografia, definita attualmente come “gold-standard” data la sua elevata risoluzione spaziale, fornisce preziose indicazioni sulla struttura trabecolare e corticale del tessuto. Tuttavia la micro-CT è applicabile solo in-vitro, per cui l’obiettivo di questo lavoro di tesi è quello di verificare se e in che modo una diversa metodica di imaging, quale la cone-beam CT (applicabile invece in-vivo), possa fornire analoghi risultati, pur essendo caratterizzata da risoluzioni spaziali più basse. L’elaborazione delle immagini tomografiche, finalizzata all’analisi dei più importanti parametri morfostrutturali del tessuto osseo, prevede la segmentazione delle stesse con la definizione di una soglia ad hoc. I risultati ottenuti nel corso della tesi, svolta presso il Laboratorio di Tecnologia Medica dell’Istituto Ortopedico Rizzoli di Bologna, mostrano una buona correlazione tra le due metodiche quando si analizzano campioni definiti “ideali”, poiché caratterizzati da piccole porzioni di tessuto osseo di un solo tipo (trabecolare o corticale), incluso in PMMA, e si utilizza una soglia fissa per la segmentazione delle immagini. Diversamente, in casi “reali” (vertebre umane scansionate in aria) la stessa correlazione non è definita e in particolare è da escludere l’utilizzo di una soglia fissa per la segmentazione delle immagini.