1 resultado para mean and variance ratio
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Academic Research Repository at Institute of Developing Economies (4)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (23)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (2)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (38)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (24)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (17)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (44)
- Boston University Digital Common (1)
- Brock University, Canada (7)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (24)
- CentAUR: Central Archive University of Reading - UK (56)
- Central European University - Research Support Scheme (2)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (45)
- Cochin University of Science & Technology (CUSAT), India (7)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (6)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (5)
- Digital Commons at Florida International University (8)
- Digital Peer Publishing (1)
- DigitalCommons - The University of Maine Research (5)
- DigitalCommons@The Texas Medical Center (15)
- DigitalCommons@University of Nebraska - Lincoln (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (7)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (6)
- Glasgow Theses Service (2)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (10)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (52)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (2)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (7)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- Publishing Network for Geoscientific & Environmental Data (91)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (43)
- Queensland University of Technology - ePrints Archive (64)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (7)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (152)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scientific Open-access Literature Archive and Repository (1)
- Universidad de Alicante (3)
- Universidad Politécnica de Madrid (11)
- Universidade Complutense de Madrid (3)
- Universidade Federal do Pará (5)
- Universidade Federal do Rio Grande do Norte (UFRN) (7)
- Universidade Técnica de Lisboa (1)
- Universita di Parma (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (17)
- University of Connecticut - USA (2)
- University of Michigan (2)
- University of Queensland eSpace - Australia (16)
- University of Southampton, United Kingdom (1)
- University of Washington (4)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
Computing the weighted geometric mean of large sparse matrices is an operation that tends to become rapidly intractable, when the size of the matrices involved grows. However, if we are not interested in the computation of the matrix function itself, but just in that of its product times a vector, the problem turns simpler and there is a chance to solve it even when the matrix mean would actually be impossible to compute. Our interest is motivated by the fact that this calculation has some practical applications, related to the preconditioning of some operators arising in domain decomposition of elliptic problems. In this thesis, we explore how such a computation can be efficiently performed. First, we exploit the properties of the weighted geometric mean and find several equivalent ways to express it through real powers of a matrix. Hence, we focus our attention on matrix powers and examine how well-known techniques can be adapted to the solution of the problem at hand. In particular, we consider two broad families of approaches for the computation of f(A) v, namely quadrature formulae and Krylov subspace methods, and generalize them to the pencil case f(A\B) v. Finally, we provide an extensive experimental evaluation of the proposed algorithms and also try to assess how convergence speed and execution time are influenced by some characteristics of the input matrices. Our results suggest that a few elements have some bearing on the performance and that, although there is no best choice in general, knowing the conditioning and the sparsity of the arguments beforehand can considerably help in choosing the best strategy to tackle the problem.