3 resultados para material flow.
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Graphite is a mineral commodity used as anode for lithium-ion batteries (LIBs), and its global demand is doomed to increase significantly in the future due to the forecasted global market demand of electric vehicles. Currently, the graphite used to produce LIBs is a mix of synthetic and natural graphite. The first one is produced by the crystallization of petroleum by-products and the second comes from mining, which causes threats related to pollution, social acceptance, and health. This MSc work has the objective of determining compositional and textural characteristics of natural, synthetic, and recycled graphite by using SEM-EDS, XRF, XRD, and TEM analytical techniques and couple these data with dynamic Material Flow Analysis (MFA) models, which have the objective of predicting the future global use of graphite in order to test the hypothesis that natural graphite will no longer be used in the LIB market globally. The mineral analyses reveal that the synthetic graphite samples contain less impurities than the natural graphite, which has a rolled internal structure similar to the recycled one. However, recycled graphite shows fractures and discontinuities of the graphene layers caused by the recycling process, but its rolled internal structure can help the Li-ions’ migration through the fractures. Three dynamic MFA studies have been conducted to test distinct scenarios that include graphite recycling in the period 2022-2050 and it emerges that - irrespective of any considered scenario - there will be an increase of synthetic graphite demand, caused by the limited stocks of battery scrap available. Hence, I conclude that both natural and recycled graphite is doomed to be used in the LIB market in the future, at least until the year 2050 when the stock of recycled graphite production will be enough to supersede natural graphite. In addition, some new improvement in the dismantling and recycling processes are necessary to improve the quality of recycled graphite.
Resumo:
Per raggiungere gli obiettivi di neutralità climatica del 2050 stabiliti dal Green Deal europeo, l’approvvigionamento sicuro e sostenibile di materie prime critiche è considerato essenziale e l’attuale crisi energetica ne ha rimarcato l’importanza. Tra queste materie prime, il neodimio risulta essere fondamentale per un ampio numero di applicazioni tecnologiche di interesse crescente come la mobilità elettrica e la generazione di energia elettrica da fonti rinnovabili. La produzione mondiale di neodimio è dominata dalla Cina e l’Italia dipende completamente dalle importazioni per soddisfare la propria domanda. Il riciclo dei prodotti a fine vita potrebbe coprire parte della domanda nazionale di neodimio e ridurre la dipendenza dalle importazioni cinesi. Ma, attualmente, la percentuale di riciclo del metallo è inferiore all’1% globalmente con attività di riciclo spesso inesistenti su scala industriale a livello nazionale. Per dare chiarezza sulla catena del valore di neodimio in Italia e dimostrare le potenzialità del suo riciclo, in questa tesi sono state applicate le metodologie di MFA e di LCA. Un modello dinamico retrospettivo di MFA è stato sviluppato col fine di investigare il ciclo antropogenico del neodimio, identificando e valutando i flussi e le riserve nazionali dal 1995 al 2020. Attraverso un modello di distribuzione dei tempi di vita è stata quantificata la riserva in uso del metallo, che ammonta a 3,3 kt Nd o 56 g Nd pro capite. Un riciclo della riserva in uso potrebbe soddisfare l’attuale domanda di neodimio oltre al 2030. I risultati dell’MFA sono stati integrati con i fattori LCA di caratterizzazione di impatto ambientale, dimostrando che il riciclo potrebbe ridurre più dell’80% delle emissioni di gas serra e della energia richiesta associate alla produzione di neodimio primario. Si prevede che lo studio possa contribuire all’implementazione di politiche e strategie di rafforzamento della catena di approvvigionamento del neodimio.
Resumo:
This thesis addresses various aspects related to silos, from the strength of some structural parts to internal actions due to grain. Two hopper silo models were mainly studied, so the thesis is divided into two parts. The first part focuses only on the silo cylinder and deals with the collapse of a silo due to failure of the vertical walls. We had the opportunity to access data from a real silo and perform tensile tests on corrugated sheets. The theoretical and experimental resistance of the corrugated sheet forming the silo cylinder was studied. The resistance was then compared with the internal actions due to grain prescribed by various standards. The second part, however, focused on the hopper of a silo in which a load test (loading and unloading of the silo) was performed. Through the test data, an attempt was made to reproduce the pressures normal to the hopper through analytical reasoning. The experimental pressures were then compared with the theoretical pressures predicted by the standards. In addition, with mathematical reasoning, an attempt was made to reproduce the horizontal pressure on the vertical walls of the silo from the experimental normal pressure in the hopper. In fact, the test was related only to the hopper part and not to the silo cylinder.